

i15 Analyseur de gazométrie et de biochimie sanguine Version 1.1

A propos de ce manuel

Réf. : 01.54.456203-11

Date de publication : Mai 2014

© Copyright EDAN INSTRUMENTS, INC. 2014. Tous droits réservés.

Avis

Ce manuel est conçu pour vous aider à mieux comprendre le fonctionnement et la maintenance du produit. Nous vous rappelons que le produit doit être utilisé en stricte conformité avec ce manuel. Toute utilisation non conforme à ce manuel risque de provoquer un dysfonctionnement ou un accident pour lequel EDAN INSTRUMENTS, INC. (ci-après nommée EDAN) ne pourrait être tenue pour responsable.

EDAN est propriétaire des droits d'auteur relatifs à ce manuel. Sans consentement préalable écrit de la part d'EDAN, le contenu de ce manuel ne doit en aucun cas être photocopié, reproduit ou traduit dans d'autres langues.

Ce manuel contient des données protégées par la loi sur les droits d'auteur, notamment, mais sans s'y limiter, des informations confidentielles de nature technique ou relatives aux brevets. Ces dernières ne doivent en aucun cas être divulguées à quelque tierce partie non concernée.

L'utilisateur doit comprendre qu'aucun élément de ce manuel ne lui octroie, explicitement ou implicitement, ni droit ni licence concernant l'utilisation de toute propriété intellectuelle appartenant à EDAN.

EDAN se réserve le droit de modifier ce manuel, de le mettre à jour et de fournir des explications s'y rapportant.

Responsabilité du fabricant

EDAN n'assume de responsabilité pour les éventuels effets sur la sécurité, la fiabilité et les performances de l'équipement que si :

les opérations d'assemblage, extensions, réajustements, modifications ou réparations sont effectués par des personnes autorisées par EDAN ;

l'installation électrique de l'environnement concerné est en conformité avec les normes nationales ;

l'instrument est utilisé conformément aux instructions d'utilisation.

Sur demande, EDAN pourra fournir, moyennant une compensation, les schémas de circuits nécessaires, ainsi que toute autre information susceptible d'aider les techniciens qualifiés à effectuer la maintenance ou la réparation de certaines pièces, configurées au préalable par EDAN comme réparables par l'utilisateur.

Termes utilisés dans ce manuel

Le présent guide vise à fournir les concepts-clés en matière de précautions de sécurité.

AVERTISSEMENT

Le terme **AVERTISSEMENT** prévient que certaines actions ou situations pourraient entraîner des blessures graves, voire mortelles.

ATTENTION

Le terme **ATTENTION** prévient que certaines actions ou situations pourraient entraîner des dommages au niveau de l'équipement, produire des résultats inexacts ou invalider une procédure.

REMARQUE

Une **REMARQUE** fournit des informations utiles concernant une fonction ou une procédure.

Table des matières

Chapitre 1 Guide de sécurité	1
1.1 Utilisation prévue	1
1.2 Avertissements et précautions	1
1.2.1 Avertissements de sécurité	1
1.2.2 Consignes de sécurité	5
1.3 Symboles et définitions	7
Chapitre 2 Présentation du système	9
2.1 Introduction	9
2.2 Châssis du système	11
2.3 Aspect extérieur de l'analyseur	13
2.4 Composants du système	14
2.4.1 Imprimante thermique	14
2.4.2 Cartouche de test	14
2.4.3 Voyant d'alimentation	17
2.4.4 Ecran LCD et écran tactile	17
2.4.5 Ports d'E/S	18
2.4.6 Touche Marche/Arrêt	18
2.4.7 Pack de solutions étalons	18
2.4.8 Scanner de codes-barres	21
2.4.9 Ventilateur d'échappement	22
2.4.10 Simulateur électronique	22
2.4.11 Périphériques	23
2.5 Configuration	23
2.5.1 Configuration standard	23
2.5.2 Options	24
Chapitre 3 Guide d'installation	25
3.1 Inspection au retrait de l'emballage	25
3.2 Conditions d'installation	25
3.2.1 Conditions environnementales	25
3.2.2 Caractéristiques d'alimentation	26
3.3 Réglage	26
3.3.1 Branchement à l'alimentation secteur	26
3.3.2 Installation de la batterie	26
3.3.3 Installation du papier à imprimante	28
3.3.4 Mise sous/hors tension de l'analyseur	30
3.3.5 Connexion et déconnexion de l'utilisateur	31
3.3.6 Réglage de la date et de l'heure	32
3.3.7 Visionnage des vidéos de formation	33
3.3.8 Remplacement d'un pack de solutions étalons	33
3.3.9 Test de démonstration	38
3.3.10 Branchement des périphériques	41

Chapitre 4 Configuration	43
4.1 Accès à l'écran Configuration	43
4.2 Configuration système	44
4.2.1 Configuration imprimante	45
4.2.2 Configuration réseau	47
4.2.3 Configuration date et langue	50
4.2.4 Configuration rétroéclairage et volume	51
4.2.5 Diagnostics	52
4.2.6 A propos de l'analyseur	52
4.3 Configuration test	53
4.3.1 Configuration verrouillage CQ	53
4.3.2 Configuration informations patient	54
4.3.3 Configuration plages de référence	58
4.3.4 Configuration unités	59
4.3.5 Configuration facteurs de corrélation	61
4.3.6 Configuration Hct	62
4.3.7 Configuration du simulateur interne	63
4.3.8 Configuration de l'étalonnage	64
Chapitre 5 Analyse du patient	65
5.1 Prélèvement et préparation des échantillons	65
5.1.1 Prélèvement des échantillons	65
5.1.2 Anticoagulants	65
5.1.3 Dispositifs et volume de prélèvement	66
5.1.4 Remarques	66
5.2 Analyse du patient	67
5.2.1 Procédures d'analyse du patient	67
5.2.2 Description des symboles de résultat	76
5.3 Base de données d'échantillons patient	76
5.3.1 Recherche des données d'échantillons patient	78
5.3.2 Affichage des détails relatifs aux données d'échantillon patient	79
5.3.3 Modification des données d'informations patient	80
5.3.4 Exportation/téléchargement/impression des données d'échantillons patient	81
Chapitre 6 Tests de contrôle qualité (CQ)	82
6.1 Test de contrôle	82
6.1.1 Contrôles	82
6.1.2 Procédures de test de contrôle	84
6.1.3 Correction de la température pour pO_2 et pCO_2	92
6.1.4 Base de données de contrôles	93
6.2 Test d'aptitude	96
6.2.1 Procédures du test d'aptitude	96
6.2.2 Base de données de tests d'aptitude	103

6.3 Test de vérification d'étalonnage	106
6.3.1 Contrôles de vérification d'étalonnage	106
6.3.2 Procédures de test de vérification de l'étalonnage	107
6.3.3 Base de données de vérification d'étalonnage	115
6.4 Test sur simulateur	119
6.4.1 Procédures du test sur simulateur externe	119
6.4.2 Base de données du simulateur	122
Chapitre 7 Gestion des données	125
7.1 Introduction	125
7.2 Bases de données	125
7.2.1 Base de données de sécurité	126
7.2.2 Base de données de diagnostics	130
7.2.3 Base de données des journaux d'événements	131
7.2.4 Sauvegarde	133
Chapitre 8 Dépannage	135
Chapitre 9 Nettoyage, entretien et maintenance	140
9.1 Nettovage et désinfection de l'analyseur	140
9.1.1 Nettovage et désinfection des surfaces extérieures	140
9.1.2 Nettovage et désinfection de l'écran	141
9.1.3 Nettoyage de la tête d'imprimante	142
9.2 Entretien et maintenance	143
9.2.1 Recharge et remplacement de la batterie	143
9.2.2 Papier à imprimante	145
9.2.3 Maintenance de l'analyseur	145
Chapitre 10 Théorie	147
10.1 Méthode de mesure	147
10.2 Détermination des résultats de test	148
10.2.1 Détermination de la concentration d'analytes	148
10.2.2 Détermination de la concentration cellulaire	149
10.3 Equations relatives aux paramètres calculés	149
Chapitre 11 Paramètres	153
- 11.1 pH	153
11.1.1 Utilisation prévue	153
11.1.2 Traçabilité	153
11.1.3 Correction de la température	153
11.1.4 Caractéristiques de performance	154
11.1.5 Substances interférentes	155
11.2 <i>p</i> CO ₂	155
11.2.1 Utilisation prévue	156
11.2.2 Traçabilité	156

11.2.3 Correction de la température	
11.2.4 Caractéristiques de performance	
11.2.5 Substances interférentes	
11.3 <i>p</i> O ₂	
11.3.1 Utilisation prévue	
11.3.2 Traçabilité	
11.3.3 Correction de la température	
11.3.4 Caractéristiques de performance	
11.3.5 Substances interférentes	
11.4 Sodium (Na ⁺)	
11.4.1 Utilisation prévue	
11.4.2 Traçabilité	
11.4.3 Caractéristiques de performance	
11.4.4 Substances interférentes	
11.5 Potassium (K ⁺)	
11.5.1 Utilisation prévue	
11.5.2 Traçabilité	
11.5.3 Caractéristiques de performance	
11.5.4 Substances interférentes	
11.6 Calcium ionisé (Ca ⁺⁺)	
11.6.1 Utilisation prévue	
11.6.2 Traçabilité	
11.6.3 Caractéristiques de performance	
11.6.4 Substances interférentes	
11.7 Chlorure (Cl ⁻)	
11.7.1 Utilisation prévue	
11.7.2 Traçabilité	
11.7.3 Caractéristiques de performance	
11.7.4 Substances interférentes	
11.8 Hématocrite (Hct)	
11.8.1 Utilisation prévue	
11.8.2 Traçabilité	
11.8.3 Caractéristiques de performance	
11.8.4 Substances interférentes	
Chapitre 12 Garantie et service après-vente	
12.1 Garantie	
12.2 Coordonnées	
Anneve 1 Caractéristiques techniques	175
A1.1 Conditions onvironnementales	175
A1.1 Conutions environnementales	
A1.2 Caractéristiques de performança	1/0 176
Δ1 4 Imprimante	
	1/0

A1.5 Batterie rechargeable	
A1.6 Consignes de sécurité	
Annexe 2 Plages de mesure	
A2.1 Plages de mesure pour les paramètres mesurés	
A2.2 Plages de mesure pour les paramètres calculés	
Annexe 3 Plages de référence	179
Annexe 4 Informations relatives à la compatibilité électromagnétique	
Annexe 5 Guide d'utilisation de l'interface du SIH/LIS	
A5.1 Principe	
A5.1.1 Conception de la communication	
A5.1.2 Transmission des données	
A5.1.3 Protocole HL7 MLLP (HL7 Lower Layer Protocol)	
A5.1.4 Type de codage des messages	
A5.2 Messages HL7	
A5.2.1 Syntaxe des messages	
A5.2.2 Types de messages pris en charge	
A5.2.3 Accusés de réception	
A5.2.4 Transmission des rapports	
A5.3 Annexe	
A5.3.1 Segment de message	
A5.3.2 Exemples	

Chapitre 1 Guide de sécurité

1.1 Utilisation prévue

L'analyseur de gazométrie et de biochimie sanguine i15 (qui comprend l'analyseur de gazométrie et de biochimie sanguine, le pack de solutions étalons, la cartouche de test) est un système automatisé portatif qui mesure les gaz et la biochimie du sang, ainsi que l'hématocrite dans les échantillons de sang total. Le système est exclusivement réservé à l'usage des techniciens, infirmières, médecins et thérapeutes formés. Il a été conçu pour une utilisation dans un environnement de laboratoire, à proximité d'un établissement hospitalier ou d'un centre de soins médicaux. En fournissant des résultats de test en temps utile, le système permet aux professionnels de santé de prendre plus rapidement des décisions thérapeutiques et améliore donc la qualité des soins aux patients.

1.2 Avertissements et précautions

Afin d'utiliser le système de manière sûre et efficace et d'éviter tout risque éventuel causé par un fonctionnement inapproprié, lisez le manuel d'utilisation dans son intégralité et familiarisez-vous avec l'ensemble des fonctions du système et des procédures d'utilisation appropriées avant utilisation. Conservez toujours ce manuel à proximité de l'analyseur.

Portez une attention particulière aux informations données aux paragraphes Avertissement et Attention suivants.

1.2.1 Avertissements de sécurité

REMARQUE:

La fiabilité de l'analyseur et la sécurité des opérateurs sont prises en compte lors de la conception et de la fabrication du produit. Les mesures de sécurité et les mesures préventives suivantes doivent être respectées :

AVERTISSEMENT

Avertissements de sécurité

- 1. L'analyseur n'est pas destiné à un usage thérapeutique.
- 2. L'analyseur n'est pas prévu pour une utilisation à domicile.
- 3. N'utilisez pas l'analyseur s'il est endommagé ou défectueux.

- 4. Le système doit être installé par un technicien de maintenance qualifié. N'essayez pas d'accéder aux composants internes de l'analyseur. Seul le personnel de maintenance autorisé peut déposer le boîtier de l'analyseur.
- 5. Pour éviter tout risque d'électrocution, ne modifiez jamais les circuits d'alimentation secteur de l'analyseur.
- L'analyseur est exclusivement réservé à l'usage des techniciens, infirmières, médecins et thérapeutes formés. Avant d'utiliser l'appareil, les opérateurs doivent être familiarisés avec le contenu du présent manuel.
- Les résultats donnés par le système doivent être examinés sur la base de l'état clinique général du patient et ne doivent en aucun cas se substituer à une vérification régulière de son état.
- 8. Afin de garantir une fiabilité de la mise à la terre, branchez uniquement le système à une prise d'alimentation de qualité hospitalière.
- 9. Branchez l'analyseur à une prise mise à la terre et assurez-vous que l'alimentation secteur répond aux exigences spécifiées dans le manuel d'utilisation.
- 10. Ne pas dépasser la charge maximale autorisée lorsque des multiprises sont utilisées pour alimenter le système.
- RISQUE D'ELECTROCUTION N'essayez pas de brancher ou de débrancher le cordon d'alimentation avec des mains mouillées. Assurez-vous qu'elles sont propres et sèches avant de toucher le cordon d'alimentation.
- 12. Si vous doutez de la fiabilité de l'adaptateur secteur ou du cordon d'alimentation, utilisez la batterie à la place de l'alimentation secteur. Avant d'utiliser l'alimentation secteur, il est recommandé de vérifier l'adaptateur secteur et le cordon d'alimentation. Si nécessaire, consultez EDAN ou ses distributeurs agréés pour une opération de maintenance.
- 13. L'analyseur n'est pas étanche. Ne l'utilisez pas à des emplacements où des fuites d'eau ou d'autres liquides peuvent se produire.
- 14. Ne déversez pas de liquides sur le système, car une infiltration de liquide à l'intérieur du circuit électrique peut provoquer un courant de fuite excessif ou une panne du système.

- 15. Ne vaporisez pas de solutions de nettoyage sur le système, car elles pourraient s'infiltrer dans celui-ci et endommager les composants électroniques. Des vapeurs de solvants peuvent s'accumuler et former des gaz inflammables ou endommager les composants internes.
- 16. Pour éviter tout risque de choc électrostatique et d'endommagement du système, évitez de vaporiser des nettoyants en aérosol sur l'écran de l'analyseur.
- RISQUE D'EXPLOSION L'analyseur ne doit pas être utilisé en présence d'un mélange anesthésique inflammable avec de l'oxygène ou d'autres composés inflammables.
- 18. Pour éviter tout risque d'électrocution, n'utilisez jamais le système à une altitude supérieure à 3 000 mètres au-dessus du niveau de la mer.
- 19. Faites vérifier régulièrement le système par un technicien de maintenance qualifié.
- 20. Seuls les accessoires fournis ou recommandés par le fabricant doivent être utilisés. Dans le cas contraire, les performances et la protection contre les chocs électriques ne pourront être garanties.
- 21. Les échantillons de sang doivent être prélevés conformément aux directives médicales adéquates. Ces dernières contiennent des informations détaillées sur le prélèvement, telles que le choix du site, les procédures de prélèvement, la manipulation des échantillons, etc. Les techniques stériles doivent être respectées pour éviter toute contamination du site.
- 22. Manipulez les échantillons de sang et les dispositifs de prélèvement avec soin, et utilisez des gants de protection approuvés pour éviter tout contact direct avec les échantillons.
- 23. Pour éviter tout risque d'électrocution et d'endommagement du système, mettez l'analyseur hors tension et débranchez-le de la source d'alimentation secteur avant de procéder aux opérations de nettoyage et de désinfection.
- 24. Pour éviter l'obstruction des orifices d'admission et d'évacuation d'air du ventilateur par des corps étrangers, vérifiez-les régulièrement.
- 25. Pour éviter tout risque de blessure, ne touchez jamais la tige de la charnière de raccord d'un pack de solutions étalons.

- 26. Et ne regardez jamais directement le faisceau lumineux du scanner.
- 27. Le système est exclusivement réservé au diagnostic in vitro.
- Réalisez régulièrement des tests de contrôle qualité (CQ) pour vous assurer que le système fonctionne correctement.
- 29. Les cartouches de test jetables ne doivent être utilisées qu'une seule fois.
- 30. Ne remplacez jamais un pack de solutions étalons lorsque l'analyseur est hors tension.
- 31. Un pack de solutions étalons est destiné à un usage unique. Si un pack de solutions étalons est retiré du système, il ne peut pas être réinséré dans ce dernier.
- 32. A L'échantillon est contenu dans la cartouche de test. Les cartouches de test doivent donc être éliminées avec les déchets biologiques dangereux, conformément aux réglementations locales en vigueur.
- 33. N'utilisez jamais de simulateur électronique externe dans un environnement électromagnétique et ne le touchez jamais avec les mains pendant un test.
- 34. N'utilisez pas l'analyseur au terme de sa durée de vie utile. Mettez-le au rebut conformément aux réglementations locales.

Entretien de la batterie

- 35. Une utilisation incorrecte peut provoquer une surchauffe ou l'explosion de la batterie au lithium (ci-après dénommé batterie), ou encore l'apparition de flammes, ce qui peut réduire la capacité de la batterie. Veuillez lire attentivement le manuel d'utilisation et les messages d'avertissement.
- 36. La batterie correspondant au modèle et aux spécifications indiquées par le fabricant doit être utilisée.
- 37. **Danger d'explosion** N'inversez pas l'anode et la cathode lors de l'installation de la batterie.
- Ne chauffez pas la batterie, ne l'aspergez pas de liquide, ne la jetez pas au feu et ne l'immergez pas dans de l'eau.

- 39. Ne fissurez pas la batterie et ne la retirez pas.
- 40. En présence d'une fuite ou d'une odeur fétide, cessez immédiatement d'utiliser la batterie. Si votre peau ou vos vêtements entrent en contact avec le liquide qui s'écoule, rincez-les immédiatement à l'eau claire. Si le liquide entre en contact avec vos yeux, ne les essuyez pas. Rincez-les abondamment à l'eau claire et consultez immédiatement un médecin.
- 41. L'analyseur et les accessoires doivent être mis au rebut conformément aux réglementations locales au terme de leur durée de vie utile. Ils peuvent également être rapportés au revendeur ou au fabricant afin d'être recyclés ou mis au rebut de manière adéquate. Les batteries constituent des déchets dangereux. Ne les jetez pas avec les ordures ménagères. Lorsqu'elles sont usagées, déposez les batteries dans un point de collecte prévu pour le recyclage des batteries. Pour plus d'informations sur le recyclage de ce produit ou de la batterie, contactez votre municipalité ou le revendeur auprès duquel vous avez acheté le produit.
- 42. Retirez la batterie de l'analyseur si ce dernier n'est pas utilisé pendant une période prolongée.
- 43. Si la batterie est stockée seule et reste inutilisée pendant une période prolongée, il est recommandé de la charger au moins une fois tous les 6 mois pour éviter qu'elle ne soit pas trop déchargée.

1.2.2 Consignes de sécurité

ATTENTION

- 1. N'utilisez pas l'analyseur dans un environnement poussiéreux mal ventilé ou en présence de substances corrosives.
- 2. Pour éviter toute erreur de diagnostic, assurez-vous que la date et l'heure du système sont correctes.
- Le système est exclusivement conçu pour l'analyse d'échantillons de sang total. Ne l'utilisez jamais pour analyser du sérum ou du plasma.
- Si l'échantillon de sang contient des caillots ou des bulles, jetez-le et prélevez à nouveau des échantillons.

ATTENTION

- 5. Effectuez immédiatement le test une fois l'échantillon prélevé pour obtenir des résultats plus précis. Mesurez les échantillons de gaz du sang et de Ca⁺⁺ dans un délai de 10 minutes et ceux d'autres analytes dans un délai de 30 minutes.
- Transportez, stockez et utilisez l'analyseur, les cartouches de test, les kits de solutions étalons et les produits de contrôle qualité (CQ) conformément aux instructions du manuel d'utilisation.
- 7. N'exécutez aucune intervention brutale, par exemple insérer/retirer brusquement les cartouches de test/packs de solutions étalons.
- Seuls les accessoires (tels que les cartouches de test, les kits de solutions étalons, les produits de contrôle qualité (CQ), etc.) fournis par EDAN ou ses distributeurs agréés doivent être utilisés.
- 9. Branchez l'analyseur aux périphériques recommandés par EDAN.
- 10. Effectuez les opérations de maintenance du système conformément à la procédure décrite dans le manuel d'utilisation pour éviter tout dommage potentiel.
- 11. Ne nettoyez pas l'analyseur et ses accessoires à l'aide d'un tissu abrasif.
- 12. N'immergez en aucun cas l'analyseur.
- 13. Vérifiez l'absence de sources d'interférences électromagnétiques intenses à proximité de l'analyseur, telles que des émetteurs radio ou des téléphones portables. Attention : un équipement électrique médical volumineux, tel qu'un équipement électrochirurgical, un équipement de radiologie ou un équipement d'imagerie par résonance magnétique, est susceptible de provoquer des interférences électromagnétiques.
- 14. Une humidité extrême peut compromettre les résultats du test. Une humidité relative supérieure à 80 % peut engendrer des résultats imprécis.
- 15. Utilisez ce système à une température comprise entre 10 et 31 °C. En dehors de cette plage, le système peut générer des résultats erronés.

1.3 Symboles et définitions

Symbole	Description		
\wedge	Attention !		
i	Consulter les instructions d'utilisation		
	Risques biologiques		
tes.	Sensible à l'électricité statique		
E A	Recyclage		
CE	Ce symbole indique que l'appareil est conforme à la directive 98/79/CE du Conseil européen relative aux dispositifs médicaux.		
Ċ∕⊙	Touche Marche/Arrêt		
 占 占	Port réseau		
10101	Port série		
•	Connexion USB (Universal Serial Bus)		
EDAN	Marque commerciale		
	Sens d'insertion de la cartouche de test		
2	La porte de la chambre du pack de solutions étalons est fermée.		
Ĩ	La porte de la chambre du pack de solutions étalons est ouverte.		

Les symboles suivants apparaissent sur l'emballage du système :

Symbole	Description		
IVD	Dispositif de diagnostic in vitro		
X	Indique qu'au terme de sa durée de vie utile, l'appareil doit être confié à une structure de récupération et de recyclage appropriée, conformément aux réglementations locales.		
EC REP	Représentant autorisé dans la communauté européenne		
	Fabricant		
\sim	Date de fabrication		
X	Limitations de température		
\otimes	Ne pas réutiliser		
\square	Date de péremption		
Σ	Contient une quantité suffisante de tests (n)		
CONTROL	Contrôle		
SN	Numéro de série		
LOT	Numéro du lot		

Chapitre 2 Présentation du système

REMARQUE:

Les images et interfaces reproduites dans ce manuel sont fournies uniquement à titre de référence.

2.1 Introduction

Le système est destiné à l'analyse in-vitro du sang total afin de fournir des résultats quantitatifs d'une série de tests. Il comprend un analyseur intégrant une interface utilisateur dotée d'un grand écran tactile couleur connecté à l'analyseur électronique. Le module d'interface utilisateur comprend l'UC de l'analyseur et toutes les interfaces électroniques nécessaires à la communication externe et au stockage des données. Le produit se compose d'une cartouche à usage unique dans laquelle l'échantillon est introduit. La cartouche contient des capteurs électrochimiques qui génèrent des signaux en rapport avec les niveaux de concentration dans le sang. Ces niveaux de concentration sont affichés sur l'écran de l'analyseur, stockés en mémoire et peuvent être transmis au système de gestion de données (SGD) ou au SIH/LIS via une liaison de communication ou une connexion Wi-Fi.

Les tableaux suivants répertorient les paramètres pouvant être déterminés par le système :

Symbole	Description		
рН	Logarithme négatif de la concentration en ions hydrogène		
pCO ₂	Pression partielle du gaz carbonique		
pO_2	Pression partielle de l'oxygène		
K^+	Concentration en ions potassium		
Na ⁺	Concentration en ions sodium		
Cl	Concentration en ions chlorure		
Ca ⁺⁺	Concentration de calcium ionisé		
Hct	Hématocrite : volume occupé par les globules rouges dans un volume de sang total donné.		

Paramètres mesurés :

Paramètres calculés :

Symbole	Description		
cH^+	Concentration en ions hydrogène		
cH ⁺ (T)	Concentration en ions hydrogène corrigée en fonction de la température de patient saisie		
pH(T)	Valeur de pH corrigée en fonction de la température de patient saisie		
<i>p</i> CO ₂ (T)	pCO ₂ corrigée en fonction de la température de patient saisie		
$pO_2(T)$	pO_2 corrigé en fonction de la température de patient saisie		
HCO ₃ ⁻ act	Concentration en ions bicarbonates		
HCO ₃ std	Concentration en ions bicarbonates normalisée en fonction d'une pCO_2 de 40 mmHg		
BB (B)	Base tampon		
BE (B)	Excès de base (B)		
BE (ecf)	Excès de base (ecf)		
ctCO ₂	Gaz carbonique total		
Ca ⁺⁺ (7,4)	Concentration de calcium ionisé dans le sang normalisé à un pH de 7,4		
AnGap	Approximation de la différence entre les cations et les anions mesurés dans l'échantillon		
tHb (est)	Estimation de l'hémoglobine contenue dans l'échantillon		
sO ₂ (est)	Estimation de la saturation en oxygène de l'hémoglobine : rapport entre la quantité d'hémoglobine liée à l'oxygène et la quantité totale d'hémoglobine capable de capter l'oxygène		
pO_2 (A-a)	Différence de pression alvéolaire-artérielle en oxygène		
pO_2 (A-a) (T)	Différence de pression alvéolaire-artérielle corrigée en fonction de la température de patient saisie		
<i>p</i> O ₂ (a/A)	Rapport de pression artérielle-alvéolaire en oxygène		

Symbole	Description	
$pO_2(a/A)(T)$	Rapport de pression artérielle-alvéolaire en oxygène corrigé en fonction de la température de patient saisie	
	temperature de patient saisle	
RI	Indice respiratoire : rapport entre la différence de pression alvéolaire-artérielle en oxygène dans le sang et le pO_2 artériel	
RI (T)	Indice respiratoire : rapport entre la différence de pression alvéolaire artérielle en oxygène dans le sang et la pO_2 artérielle lorsque les deux valeurs sont corrigées en fonction de la température du patient	
pO ₂ /FIO ₂	Rapport entre le pO_2 artériel et la fraction de l'oxygène inspiré	
$pO_2(T)/FIO_2$	Rapport entre le pO_2 artériel et la fraction de l'oxygène inspirée corrigée en fonction de la température de patient saisie	

Configuration : unité principale, imprimante, scanner et simulateur.

2.2 Châssis du système

Analyseur de gazométrie et de biochimie sanguine

L'analyseur de gazométrie et de biochimie sanguine est un instrument électronique qui permet d'analyser les échantillons de sang total (mesure des gaz du sang, des électrolytes, des métabolites et de l'hématocrite). L'analyseur peut :

- numériser les codes-barres de cartouches de test, les kits de solutions étalons, les contrôles, les contrôles de vérification d'étalonnage, les ID patient et opérateur, etc. ;
- identifier les types de cartouches de test ;
- contrôler le débit des liquides ;
- maintenir les échantillons à une température de 37 °C ;
- mesurer la pression barométrique et la température ambiante ;
- mesurer les signaux électriques générés par les capteurs et les biocapteurs chimiques ;

- analyser et afficher les concentrations d'analytes dans les échantillons de sang total ;
- transmettre les résultats du test au système de gestion de données (SGD) ou au SIH/LIS ;
- stocker tous les types de résultats et de données de test, tels que les résultats d'échantillon patient, de test de contrôle, de test d'aptitude, de test de vérification d'étalonnage, de test sur simulateur, etc. ;
- présenter le processus de fonctionnement à l'aide d'animations.
- Système de gestion de données (SGD)

Le système de gestion de données (SGD) est un ordinateur sur lequel le logiciel du système de gestion de données est chargé. Grâce au SGD, vous pouvez :

- saisir les données d'application du test ;
- modifier les données patient, afficher, vérifier et imprimer les résultats du test ;
- afficher, vérifier et imprimer les résultats du test de contrôle qualité (CQ) ;
- rechercher des résultats de test de patients, par nom de patient, ID patient, date et heure, service, etc. ;
- calculer la charge de travail d'un médecin, les résultats d'un paramètre de patient au cours d'une période, les heures de test et les frais d'un paramètre, et imprimer les résultats statistiques ;
- configurer les éléments suivants : médecin en charge du test, service, état de l'échantillon, impression, code-barres, etc. ;
- sauvegarder et rétablir les données, consulter les journaux ;
- afficher les données pour le diagnostic de l'instrument ;
- importer des informations patient à partir du SIH/LIS ;
- gérer jusqu'à 20 analyseurs en simultané, en stockant les résultats de test transmis par les analyseurs.

REMARQUE :

Les ID échantillon des analyseurs connectés au même SGD doivent être différentes.

♦ SIH/LIS

Le système SIH/LIS transmet les informations patient au SGD et reçoit les données provenant de l'analyseur.

Figure 2-1 Principaux composants de l'analyseur

2.4 Composants du système

2.4.1 Imprimante thermique

L'imprimante thermique est située dans la partie supérieure gauche de l'analyseur. Elle peut imprimer les résultats du test d'échantillon patient, les résultats du test de contrôle qualité (CQ), les résultats d'étalonnage, etc.

2.4.2 Cartouche de test

La cartouche de test est située à côté de l'imprimante thermique. Elle est insérée dans l'analyseur via un port spécifique. Un voyant est situé à l'intérieur du port de la cartouche de test. Si la cartouche de test est insérée correctement, le voyant s'allume en vert. Dans le cas contraire, le voyant s'allume en rouge et le système affiche une invite. Si vous souhaitez effectuer un test sur simulateur électronique externe, vous devez également insérer le simulateur dans le port de la cartouche de test.

La cartouche de test à usage unique est conçue pour être utilisée conjointement avec l'analyseur. La chambre fluidique de la cartouche de test permet de conserver les étalons et les échantillons liquides. Les capteurs de la cartouche de test peuvent générer des signaux électriques susceptibles d'être mesurés par l'analyseur. L'orifice de remplissage des échantillons permet de connecter la seringue/le tube capillaire pour l'aspiration automatique des échantillons. Les cartouches de test sont disponibles dans différentes configurations selon le type de paramètre qu'elles rapportent. Pour de plus amples informations, reportez-vous au tableau ci-dessous.

Contacts électriques

Figure 2-2 Cartouche de test Tableau 2-1 Types de cartouches de test

Type de cartouche	Paramètres mesurés	Paramètres calculés
BG8	pH, <i>p</i> CO ₂ , <i>p</i> O ₂ , Na ⁺ , K ⁺ , Cl ⁻ , Ca ⁺⁺ , Hct	cH ⁺ , HCO ₃ ⁻ act, HCO ₃ ⁻ std, BE (ecf), BE (B), BB (B), ctCO ₂ , sO_2 (est), Ca ⁺⁺ (7.4), AnGap, tHb (est), pO_2 (A-a), pO_2 (a/A), RI, pO_2 /FIO ₂ , cH ⁺ (T), pH (T), pCO_2 (T), pO_2 (T), pO_2 (A-a) (T), pO_2 (a/A) (T), RI (T), pO_2 (T)/FIO ₂
BG3	рН, <i>р</i> СО ₂ , <i>р</i> О ₂	cH ⁺ , HCO ₃ ⁻ act, HCO ₃ ⁻ std, BE (ecf), BE (B), BB (B), ctCO ₂ , sO_2 (est), pO_2 (A-a), pO_2 (a/A), RI, pO_2 /FIO ₂ , cH ⁺ (T), pH (T), pCO_2 (T), pO_2 (T), pO_2 (A-a) (T), pO_2 (a/A) (T), RI (T), pO_2 (T)/FIO ₂

Conditionnement

- 1. Le type de cartouche est indiqué sur la cartouche de test.
- 2. Chaque cartouche de test est scellée dans une pochette en aluminium contenant une bandelette d'agent dessicatif.
- 3. Le code-barres sur la pochette en aluminium contient des informations, telles que le type de cartouche, le numéro du lot et la date de péremption, etc.
- Les cartouches de test sont emballées en boîtes de 25 unités et un carton d'expédition contient 4 boîtes.

Contrôle de l'expédition

Les cartons d'expédition des cartouches de test incluent un détecteur de seuil de température qui devient gris lorsque la température dépasse la plage définie.

Détecteur de seuil de température

Figure 2-3 Carton d'expédition des cartouches de test

Le détecteur de seuil de température doit être vérifié à la réception des cartouches de test afin de s'assurer que les limites de température n'ont pas été dépassées au cours de l'expédition. Si le détecteur devient gris, effectuez des tests de contrôle (analysez au moins deux niveaux de contrôle en double) sur les cartouches de test reçues. Si le test est négatif, les cartouches de test peuvent être utilisées. Si le test est positif, n'utilisez pas les cartouches de test et contactez immédiatement EDAN afin de procéder à un échange.

REMARQUE:

N'utilisez jamais de cartouches de test pour lesquelles les tests se sont révélés positifs.

Stockage

Les cartouches de test doivent être stockées à une température comprise entre 4 et 30 °C.

Mise au rebut

L'échantillon est contenu dans la cartouche de test. Les cartouches de test doivent donc être éliminées avec les déchets biologiques dangereux, conformément aux réglementations locales en vigueur.

REMARQUE:

- ✓ Si la pochette a été endommagée, la cartouche de test ne doit pas être utilisée.
- Seules les cartouches de test fournies par EDAN ou ses distributeurs agréés doivent être utilisées.
- ✓ Seules les cartouches de test correctement stockées doivent être utilisées.
- ✓ Ne réutilisez jamais les cartouches de test.
- ✓ Ne touchez jamais l'orifice de remplissage ou les contacts électriques d'une cartouche de test.
- ✓ Utilisez les cartouches de test avant la date de péremption indiquée sur l'emballage et immédiatement après le retrait de leurs pochettes respectives.
- ✓ Les cartouches de test doivent être conservées à l'abri de la lumière directe du soleil et de toute autre source de chaleur.
- L'analyseur, les cartouches de test et l'environnement de test doivent être maintenus à la même température avant la réalisation d'un test.
- ✓ Les cartouches de test ne doivent pas tomber à terre ni être soumises à des tensions.

2.4.3 Voyant d'alimentation

Le voyant d'alimentation est situé dans la partie inférieure gauche de l'analyseur. Pendant l'utilisation du système, l'un des voyants suivants s'affiche :

- Voyant vert : l'analyseur est sous tension et l'alimentation est normale. L'analyseur peut être alimenté par la batterie au lithium rechargeable ou sur secteur. Ce voyant peut également indiquer que le système est hors tension et qu'il a été branché à l'alimentation secteur.
- Voyant jaune clignotant : l'alimentation est assurée par la batterie au lithium rechargeable et la batterie est faible.
- Voyant jaune : la batterie au lithium rechargeable est en cours de chargement.

2.4.4 Ecran LCD et écran tactile

Les activités de l'analyseur vous sont communiquées via l'écran LCD, qui affiche également les résultats du test, les informations de la base de données, des invites, etc. La communication avec l'analyseur se fait via l'écran tactile, qui vous permet d'effectuer des tests et des sélections, de saisir des données, d'afficher des informations, etc.

2.4.5 Ports d'E/S

Les ports d'E/S sont situés sur le côté gauche de l'analyseur :

	Interfaces USB (4) :	vous permettent de brancher l'analyseur à des périphériques, tels que des scanners, des imprimantes, etc.
	Port série :	permet aux ingénieurs de l'usine d'effectuer des opérations de débogage.
	Port réseau :	permet la connexion réseau au SGD ou au SIH/LIS.

2.4.6 Touche Marche/Arrêt

La touche Marche/Arrêt **O** se trouve sur le côté gauche de l'analyseur.

2.4.7 Pack de solutions étalons

La chambre du pack de solutions étalons est située sur le côté droit de l'analyseur. Vous pouvez installer le pack de solutions étalons dans cette chambre pour étalonner le capteur. L'éjecteur du pack de solutions étalons situé en regard de la porte sert à ouvrir la porte de la chambre. Un loquet, situé sur l'éjecteur du pack de solutions étalons, permet aux utilisateurs de fermer la porte de la chambre du pack de solutions étalons en toute sécurité.

Un pack de solutions étalons contenant des solutions étalons est conçu pour être utilisé conjointement avec l'analyseur afin d'effectuer un étalonnage du capteur à point unique. Les packs de solutions étalons sont disponibles pour 100 et 200 opérations d'échantillonnage. Pour commander des packs de solutions étalons adaptés à votre système, contactez EDAN ou ses distributeurs agréés.

Figure 2-4 Pack de solutions étalons

Conditionnement

- 1. Le pack de solutions étalons est scellé dans une pochette en aluminium remplie de gaz protecteurs.
- 2. Le code-barres figurant sur la pochette en aluminium contient des informations, telles que le numéro du lot et la date de péremption.
- 3. Chaque pack de solutions étalons est conditionné dans une boîte, et un carton d'expédition contient 6 boîtes.

Contrôle de l'expédition

Les cartons d'expédition des packs de solutions étalons incluent un détecteur de seuil de température qui devient gris lorsque la température dépasse la plage définie.

Détecteur de seuil de température

Figure 2-5 Carton d'expédition des packs de solutions étalons

Le détecteur de seuil de température doit être vérifié à la réception des packs de solutions étalons afin de s'assurer que les limites de température n'ont pas été dépassées au cours de l'expédition. Si le détecteur devient gris, effectuez des tests de contrôle (analysez au moins deux niveaux de contrôle en double) sur les packs de solutions étalons reçus. Si les tests sont négatifs, les packs de solutions étalons peuvent être utilisés. Si les tests sont positifs, n'utilisez pas les packs de solutions étalons et contactez immédiatement EDAN afin de procéder à un échange.

REMARQUE :

N'utilisez jamais de packs de solutions étalons pour lesquels les tests se sont révélés positifs.

Stockage

Les packs de solutions étalons doivent être stockés à une température comprise entre 2 et 8 °C (évitez le gel) et une pression ambiante de 65 à 106,6 kPa. Un pack de solutions étalons expire 30 jours après son installation ou après la date de péremption indiquée sur l'étiquette, selon la première échéance. Les jours et utilisations restants sont affichés dans la barre d'état au bas de l'écran.

Avant utilisation

Les packs de solutions étalons doivent être amenés à température ambiante avant leur utilisation. Patientez au moins 24 heures jusqu'à la stabilisation du pack de solutions étalons à température ambiante.

REMARQUE:

- ✓ Si la pochette a été endommagée ou si une fuite est détectée, le pack de solutions étalons ne doit pas être utilisé.
- Seuls les packs de solutions étalons fournis par EDAN ou ses distributeurs agréés doivent être utilisés.
- ✓ Utilisez un pack de solutions étalons avant la date de péremption indiquée sur l'emballage.
- ✓ Un pack de solutions étalons est destiné à un usage unique. Si un pack de solutions étalons est retiré du système, il ne peut pas être réinséré dans le système.

2.4.8 Scanner de codes-barres

Du même côté que la chambre du pack de solutions étalons se trouve le scanner intégré qui permet de numériser les codes-barres des cartouches de test, des packs de solutions étalons, des contrôles, des contrôles de vérification d'étalonnage, de l'ID opérateur, de l'ID patient, de l'ID échantillon, etc. L'analyseur peut également être connecté à des scanners externes, comme indiqué à la section 2.4.11.

Pour numériser un code-barres, procédez comme suit :

- 1. Appuyez sur la touche **Numériser le code-barres** ou sur pour activer le scanner de codes-barres. Le scanner émet alors un faisceau rouge.
- 2. Alignez le code-barres avec le faisceau rouge afin qu'il soit entièrement recouvert par ce dernier.

REMARQUE:

La distance entre l'analyseur et le code-barres doit être comprise entre 6 et 15 cm.

- 3. Si le code-barres est correctement numérisé, l'analyseur émet un signal sonore et désactive automatiquement le scanner.
- Si les données numérisées sont valides, le système affiche l'écran de la procédure suivante.
 Si les données numérisées ne sont pas valides, un message s'affiche pour vous avertir.

ATTENTION

- 1. Pour éviter tout risque de blessure, ne regardez pas directement le faisceau rouge.
- 2. Pour éviter tout dommage, ne rayez jamais les lunettes de protection du scanner avec des objets durs.
- 3. Pour éviter toute blessure ou détérioration, ne heurtez jamais les lunettes protectrices du scanner.
- 4. Pour éviter les erreurs de numérisation, nettoyez le scanner à l'aide d'un chiffon non pelucheux en présence de salissures.

2.4.9 Ventilateur d'échappement

Le ventilateur d'échappement est situé à l'arrière de l'analyseur pour éviter toute surchauffe. Si la température de l'analyseur dépasse le seuil prédéfini, le ventilateur est automatiquement activé.

REMARQUE:

- ✓ Assurez-vous que les orifices d'aération de l'analyseur ne sont pas obstrués afin d'assurer une bonne ventilation.
- ✓ Si le ventilateur d'échappement ne fonctionne pas correctement, contactez EDAN ou ses distributeurs agréés pour obtenir de l'aide.

2.4.10 Simulateur électronique

Les simulateurs électroniques sont des appareils de contrôle qualité conçus pour vérifier la capacité de l'analyseur à effectuer des mesures précises de la tension, du courant et de la conductivité des cartouches de test.

Simulateur électronique interne

Le simulateur électronique interne est une unité autonome de l'analyseur qui permet d'effectuer automatiquement des tests de simulation à la fréquence prédéfinie.

Simulateur électronique externe

Les utilisateurs peuvent effectuer le test sur simulateur électronique externe en fonction de leurs propres besoins. Toutefois, EDAN recommande d'exécuter ce test toutes les 24 heures. Chaque simulateur électronique externe est conditionné séparément. Si vous doutez de la fiabilité des résultats de test, vous pouvez effectuer le test sur simulateur électronique externe pour vous aider à résoudre le problème.

Figure 2-6 Simulateur électronique externe

Si les plots de contact ont été contaminés, nettoyez le simulateur électronique externe.

Pour nettoyer le simulateur électronique externe, procédez comme suit :

- 1. Humidifiez un chiffon non pelucheux avec de l'alcool à 100 %.
- 2. Essuyez le simulateur électronique externe à l'aide d'un chiffon non pelucheux.

REMARQUE :

- ✓ N'immergez jamais le simulateur.
- ✓ Le chiffon doit être humide et non mouillé.

2.4.11 Périphériques

Seul le scanner externe suivant doit être branché à l'analyseur via les ports USB : Honeywell 1900.

Seules les imprimantes externes suivantes doivent être branchées à l'analyseur via les ports USB : HP LaserJet P401DN et HP LaserJet P1606DN.

REMARQUE :

- ✓ Seuls les périphériques recommandés par EDAN doivent être branchés à l'analyseur.
- ✓ Avant de brancher un scanner Honeywell 1900 à l'analyseur, vous devez le configurer.

2.5 Configuration

2.5.1 Configuration standard

- ♦ 1 analyseur
- 1 câble d'alimentation
- ◆ 1 adaptateur d'alimentation
- ◆ 12 feuilles de papier à imprimante
- 1 batterie au lithium rechargeable
- ♦ 1 tournevis
- ◆ 1 manuel d'utilisation
- 1 carte de référence rapide
- 1 certificat d'agrément
- 1 bordereau d'expédition

2.5.2 Options

- Cartouches de test
- Pack de solutions étalons
- Simulateur électronique externe
- ♦ Adaptateur capillaire
- ♦ Contrôles
- Contrôles de vérification d'étalonnage
- Logiciel du système de gestion de données
- Scanner Honeywell 1900

Chapitre 3 Guide d'installation

3.1 Inspection au retrait de l'emballage

Avant de déballer l'appareil, procédez à un examen visuel de l'emballage. Si vous constatez des signes de dommages ou suspectez que le colis a été manipulé sans précaution, contactez le transporteur pour obtenir un dédommagement. Une fois le produit retiré de son emballage, vous devez examiner le BORDEREAU D'EXPEDITION pour vérifier minutieusement le produit et s'assurer qu'il n'a subi aucun dommage pendant le transport. Ensuite, installez le périphérique conformément aux conditions et procédures d'installation. En cas de problème, contactez immédiatement le fabricant ou ses distributeurs agréés.

AVERTISSEMENT

N'UTILISEZ PAS l'analyseur s'il est endommagé ou défectueux.

REMARQUE :

Conservez l'emballage en vue d'un futur transport éventuel ou à des fins de stockage.

3.2 Conditions d'installation

3.2.1 Conditions environnementales

L'emplacement est d'une importance capitale pour le bon fonctionnement de l'analyseur. Avant d'installer l'analyseur, choisissez un site répondant aux exigences suivantes :

- Il est plus commode de brancher l'analyseur à une prise électrique mise à la terre s'il fonctionne sur l'alimentation secteur.
- Protégez l'analyseur de toute exposition directe au soleil.
- Température ambiante comprise entre 10 et 31 °C.
- Humidité relative comprise entre 25 et 80 % (sans condensation).
- Pression ambiante comprise entre 70 et 106,6 kPa (525 à 800 mmHg).
- Posé sur une surface propre et plane dans un espace suffisamment ventilé.
- Maintenez l'analyseur à distance d'appareils à champs électriques et magnétiques puissants.
- Conservez l'analyseur à l'abri de gaz ou de vapeurs explosifs.

REMARQUE:

Les exigences ci-dessus s'appliquent également si l'analyseur est alimenté par une batterie au lithium rechargeable.

3.2.2 Caractéristiques d'alimentation

L'analyseur doit être branché à une prise électrique mise à la terre d'une tension comprise entre 100 ± 10 % V.c.a et 240 ± 10 % V.c.a. et d'une fréquence de 50/60 Hz.

3.3 Réglage

Vous pouvez à présent préparer l'analyseur en vue de son utilisation.

Commencez par poser l'analyseur sur une surface de table fixe dans un environnement répondant aux conditions décrites à la section 3.2.

3.3.1 Branchement à l'alimentation secteur

- 1. Insérez l'adaptateur d'alimentation dans le connecteur d'alimentation de l'analyseur.
- 2. Branchez le cordon d'alimentation à l'adaptateur d'alimentation.
- 3. Branchez le cordon d'alimentation dans une prise électrique mise à la terre.

REMARQUE :

- Assurez-vous que le système répond aux caractéristiques d'alimentation décrites à la section 3.2.2.
- Pour éviter que l'analyseur et d'autres appareils électroniques ne soient endommagés par les pointes de courant, il est recommandé d'utiliser un dispositif de protection contre les surtensions.

3.3.2 Installation de la batterie

AVERTISSEMENT

Mettez l'appareil hors tension et débranchez-le avant d'installer ou de retirer la batterie.

Si l'analyseur est alimenté par une batterie au lithium rechargeable, installez d'abord la batterie.

• Installation des piles

Pour installer la batterie, procédez comme suit :

- 1. Mettez l'analyseur hors tension, débranchez le cordon d'alimentation et retirez l'adaptateur d'alimentation et autres câbles de raccordement.
- 2. Positionnez l'analyseur à l'envers sur une surface plane recouverte d'un chiffon ou d'un autre type de protection.

3. Retirez les vis du compartiment de la batterie à l'aide d'un tournevis à lame cruciforme, puis retirez le couvercle du compartiment de la batterie.

 Retirez la batterie de son emballage et placez-la dans son compartiment. Assurez-vous que le connecteur de batterie est situé sur la droite et que l'étiquette de la batterie est orientée vers le bas. Installez la batterie dans le compartiment.

AVERTISSEMENT

Ne touchez pas le connecteur de la batterie avec les doigts ou des matériaux métalliques afin d'éviter les risques de blessures et de dommages liés au court circuit.

5. Mettez la batterie à plat dans le compartiment et enfoncez la bande à l'extrémité de la batterie dans la fente.

6. Fermez le couvercle du compartiment de la batterie et fixez-le à l'aide des vis.

• Retrait des piles

Procédez de façon inverse pour retirer la batterie. Vous pouvez tirer sur la bande située à l'extrémité pour retirer la batterie du compartiment.

REMARQUE:

- ✓ La batterie doit être chargée avant toute utilisation.
- ✓ Seules les batteries fournies par EDAN ou ses distributeurs agréés doivent être utilisées avec l'analyseur.
- Si l'analyseur est alimenté par la batterie et que le niveau de charge de cette dernière est faible, le système vous invite à brancher l'analyseur à une prise électrique externe. Dans le même temps, l'icône du voyant de la batterie située dans la barre d'état au bas de l'écran clignote.
- La batterie est automatiquement chargée chaque fois que l'analyseur est branché à une prise électrique.

3.3.3 Installation du papier à imprimante

L'analyseur utilise un rouleau de papier thermique d'une largeur de 50 mm. Si l'imprimante est à court de papier pendant l'impression ou si aucune feuille de papier n'est chargée, le message d'avertissement « *Pas de papier dans l'imprimante* » s'affiche à l'écran. Vous devez alors charger immédiatement du papier à imprimante ou remplacer le papier.
• Procédures de chargement de papier thermique enroulé

- 1. Ouvrez le boîtier.
- 2. Placez délicatement le papier dans le bac, côté extérieur face à la tête d'impression thermique.

- 3. Tirez environ 2 cm de papier vers l'extérieur et fermez le boîtier de l'imprimante.
- Procédures de remplacement de papier thermique enroulé

Les procédures de remplacement de papier thermique enroulé sont pratiquement identiques à celles du chargement, à la différence près que le papier restant doit être retiré de l'imprimante avant de passer à l'étape 2.

ATTENTION

- Utilisez uniquement le papier à imprimante fourni par EDAN ou ses distributeurs agréés, sous peine d'endommager l'imprimante. Ce type de dommage n'est pas couvert par la garantie.
- 2. Ne touchez pas la tête d'impression thermosensible du capteur de papier avec les mains si elle est endommagée par l'électricité statique.

REMARQUE :

Ne laissez pas le boîtier de l'imprimante ouvert, sauf en cas de remplacement du papier ou de dépannage.

3.3.4 Mise sous/hors tension de l'analyseur

REMARQUE:

Assurez-vous que tous les câbles sont correctement branchés avant de mettre l'analyseur sous tension.

• Mise sous tension de l'analyseur

Appuyez sur la touche **Marche/Arrêt** isituée sur le côté gauche de l'analyseur pour le mettre sous tension.

• Mettez l'analyseur hors tension.

1. Appuyez sur dans la partie inférieure gauche de l'écran. Le message contextuel suivant s'affiche :

Figure 3-1 Mise hors tension de l'analyseur

2. Appuyez sur ¹, puis sur **OK** dans la boîte de dialogue qui s'ouvre.

REMARQUE:

Ne mettez jamais le système hors tension pendant l'exécution de tests ou l'impression de données.

3.3.5 Connexion et déconnexion de l'utilisateur

• Connexion de l'utilisateur

- Appuyez sur la touche Marche/Arrêt située sur le côté gauche de l'analyseur pour mettre ce dernier sous tension.
- 2. Entrez le nom d'utilisateur et le mot de passe manuellement, puis appuyez sur

回顧

Entrez le nom d'utilisateur et le mot de passe manuellement, appuyez sur puis numérisez le code-barres du nom d'utilisateur.

	Connexion ut.	
Nom d'ut.		
MdP		
		→ Conn.
Util. rest. pack ét.: 100	, jrs:30 🦷 🏺	2013-11-12 16: 20 🕐

Figure 3-2 Saisie du nom d'utilisateur et du mot de passe

Lors de votre première connexion, utilisez le nom d'utilisateur **admin** et le mot de passe **123456**. Une fois dans le système, vous pourrez modifier votre mot de passe et ajouter des utilisateurs en appliquant les procédures présentées dans les sections 7.2.1.5 Modification du mot de passe système et 7.2.1.2 Ajout d'un opérateur.

• Déconnexion de l'utilisateur

1. Appuyez sur dans la partie inférieure gauche de l'écran. Le message contextuel

suivant s'affiche :

Figure 3-3 Déconnexion de l'utilisateur

2. Appuyez sur , puis sur **OK** dans la boîte de dialogue qui s'ouvre. Le système bascule vers l'écran Connexion utilisateur. Entrez un nom d'utilisateur et un mot de passe pour changer d'utilisateur.

REMARQUE:

Ne vous déconnectez jamais du système pendant l'exécution de tests ou l'impression de données.

3.3.6 Réglage de la date et de l'heure

- 1. Dans l'écran principal, appuyez sur 🔯 pour accéder à l'écran Configuration système.
- 2. Appuyez sur pour accéder à l'écran Configuration date et langue.
- 3. Sélectionnez l'heure et la date de votre choix, puis appuyez sur **OK** dans la boîte de dialogue qui s'ouvre.
- 4. Appuyez sur **OK** pour accepter les modifications.
- 5. Appuyez sur **Retour** pour retourner à l'écran principal.

ATTENTION

- 1. Assurez-vous que la date et l'heure actuelles du système sont correctes pour éviter toute erreur de diagnostic.
- 2. La modification de la date et de l'heure a un impact direct sur la date et l'heure enregistrées avec chaque donnée de test.

3.3.7 Visionnage des vidéos de formation

Le système inclut des vidéos de formation destinées à vous assister dans vos opérations.

Pour visionner les vidéos de formation, procédez comme suit :

1. Appuyez sur 💜 dans la partie inférieure droite de l'écran pour accéder à l'écran d'aide.

Figure 3-4 Ecran d'aide

- 2. Appuyez sur pour visionner la vidéo relative au remplacement d'un pack de solutions étalons.
- 3. Appuyez sur *pour visionner la vidéo relative à l'analyse d'échantillons de seringue.*
- 4. Appuyez sur usionner la vidéo relative à l'analyse d'échantillons d'ampoule.
- 5. Appuyez sur 🗾 pour visionner la vidéo relative à l'analyse d'échantillons capillaires.
- 6. Appuyez sur **Retour** pour retourner à l'écran principal.

3.3.8 Remplacement d'un pack de solutions étalons

AVERTISSEMENT

- 1. Ne remplacez jamais un pack de solutions étalons lorsque l'analyseur est hors tension.
- 2. Un pack de solutions étalons est destiné à un usage unique. Si un pack de solutions étalons est retiré du système, il ne peut pas être réinséré dans ce dernier.

Pour remplacer un pack de solutions étalons, procédez comme suit :

- 1. Examinez la date de péremption figurant sur l'emballage du pack de solutions étalons pour vous assurer que ce dernier n'est pas périmé.
- Retirez le pack de solutions étalons de son emballage et stabilisez-le à température ambiante. Le pack de solutions étalons doit reposer à température ambiante pendant au moins 24 heures.
- 3. Retirez tout excès d'humidité de la pochette en aluminium à l'aide d'un chiffon propre et sec.
- 4. Dans l'écran principal, appuyez sur 🔀 pour retourner à l'écran Configuration système.

Ouvrir porte chambre	
Annul.	

5. Appuyez sur 🛄. Le système bascule vers l'écran ci-dessous :

Figure 3-5 Ouverture de la porte de la chambre

6. Ouvrez la pochette en aluminium et retirez-en le pack de solutions étalons.

REMARQUE :

Evitez de déchirer le code-barres de la pochette en aluminium.

 Retirez le bouchon du pack de solutions étalons et ôtez la clé en appuyant dessus avec le doigt dans le sens indiqué par la flèche dans l'illustration ci-dessous.

REMARQUE:

Evitez d'appuyer sur la vanne lors du retrait de la clé.

- 8. Déverrouillez le loquet de la chambre du pack de solutions étalons à l'aide de la clé, puis tirez sur l'éjecteur du pack pour ouvrir la porte de la chambre.
- 9. Retirez le pack de solutions étalons utilisé du système. Le système bascule vers l'écran de la procédure suivante et le scanner s'allume automatiquement.

Figure 3-6 Retrait du pack de solutions étalons utilisé

10. Numérisez le code-barres sur la pochette en aluminium du pack de solutions étalons à l'aide du scanner de code-barres.

Si le code-barres est correctement numérisé, le système émet un signal sonore et le scanner est automatiquement éteint. Si les données numérisées sont valides, le système affiche l'écran de la procédure suivante. Si les données numérisées ne sont pas valides, un message s'affiche pour vous avertir.

Si le scanner est automatiquement éteint, appuyez d'abord sur est automatiquement éteint, appuyez d'abord sur est automatiquement éteint, appuyez d'abord sur

Figure 3-7 Numérisation du code-barres

 Insérez le nouveau pack de solutions étalons dans la chambre correspondante et appuyez délicatement dessus pour vous assurer qu'il est bien en place. Le système bascule vers l'écran de la procédure suivante.

Figure 3-8 Installation du pack de solutions étalons

12. Fermez la porte de la chambre.

Figure 3-9 Fermeture de la porte de la chambre

- 13. Verrouillez le loquet de la chambre du pack de solutions étalons pour fermer la porte de la chambre en toute sécurité.
- 14. Appuyez sur **OK** dans le message contextuel. Le système bascule vers l'écran principal.

Figure 3-10 Opération de remplacement réussie

REMARQUE:

 Respectez systématiquement les procédures adéquates pour remplacer un pack de solutions étalons. Sinon, le système ne fonctionnera pas correctement et le message suivant s'affichera :

Figure 3-11 Retrait incorrect du pack de solutions étalons

 ✓ Si le code-barres ne correspond pas à un pack de solutions étalons, le message suivant s'affichera :

Figure 3-12 Code-barres non identifié

 Si le code-barres correspond à un pack de solutions étalons utilisé ou périmé, le message suivant s'affichera :

Figure 3-13 Pack de solutions étalons inutilisable

3.3.9 Test de démonstration

Le système peut illustrer les processus de test d'échantillons à l'aide d'animations. Pour effectuer un test de démonstration, procédez comme suit :

- 1. Déconnectez-vous du système. Le système accède à l'écran Connexion utilisateur.
- Entrez demo dans les champs Nom d'utilisateur et Mot de passe, puis appuyez sur l Le système bascule vers l'écran suivant :

Figure 3-14 Ecran Test de démonstration 1

- 3. Appuyez sur **Numériser le code-barres**.
- 4. Appuyez sur Suivant.

Figure 3-15 Ecran Test de démonstration 2

5. Le système simule l'aspiration de l'étalon.

6. Le système simule l'étalonnage.

Etalonnage	
Patientez	05s
Ne pas retirer la cartouche	💼 🏺 2013-11-12 16: 20 📀

Figure 3-17 Ecran Test de démonstration 4

7. Le système simule l'échantillonnage.

	Echantillonnage	
	DEMO	
Ċ	Util. rest. pack ét.:100 , jrs:30 👘 🛱 2013-11-12	15: 37 🕘

Figure 3-18 Ecran Test de démonstration 5

8. Le système simule les tests.

	Mesure			
	Patientez		20s	
Ċ	Ne pas retirer la cartouche	•	2013-11-12 16: 20	0

Figure 3-19 Ecran Test de démonstration 6

Paramètre	Résultat	Unité	Paramètre	Résultat	Unité
pH	7.400		p02		
pC02			Na+	145	mmo1/L
K+	4.7	mmo1/L	Ca++	1.20	mmo1/L
C1-	101	mmo1/L	G1u		mmo1/L
Hct	46	9'e			

Figure 3-20 Ecran Test de démonstration 7

9. Le système simule l'affichage des résultats de test.

Mesuré	Calculé	Etalonnage	
Paramètre	Résultat	Unité	Plage référence
рН	7.400		[7.350-7.450]
pO2	102		[80-105]
pCO2	36.0	DEIVmnHg	[35.0-45.0]
Na+	145	mmol/L	[138-146]
K+	4.7	mmol/L	[3.5-4.9]
			🖨 Acc. 🔄 Impr

Figure 3-21 Ecran Test de démonstration 8

10. Appuyez sur Accueil pour retourner à l'écran principal.

11. Suivez les étapes décrites à la section 3.3.5 pour vous déconnecter du système.

3.3.10 Branchement des périphériques

Branchez les périphériques au système via les ports USB et assurez-vous que le système répond aux exigences de la norme CEI60601-1-1.

REMARQUE :

- ✓ Seuls les périphériques recommandés par EDAN doivent être connectés.
- ✓ Assurez-vous que l'ensemble du système répond aux exigences de la norme CEI60601-1-1.

Pour configurer un scanner Honeywell 1900, procédez comme suit :

- 1. Branchez un scanner Honeywell 1900 à l'analyseur via un port USB.
- 2. Tenez le scanner de la main droite et déclenchez le scanner avec l'index.
- 3. Numérisez les codes-barres suivants dans l'ordre.

4. Utilisez le scanner pour numériser le code-barres d'une cartouche de test. Si la numérisation du code-barres aboutit, le scanner est configuré avec succès.

Chapitre 4 Configuration

Le système peut être configuré en fonction de vos besoins cliniques. La configuration peut être uniquement effectuée par des opérateurs autorisés. Vous pouvez effectuer les opérations de configuration suivantes dans le menu Configuration :

- Configuration de l'imprimante
- Configuration du réseau
- Configuration de la date et de la langue
- Configuration du rétroéclairage et du volume
- Configuration du verrouillage CQ
- Information Patient
- Configuration des plages de référence
- Configuration des unités
- Configuration des facteurs de corrélation
- Configuration Hct
- Configuration du simulateur interne
- Configuration de l'étalonnage

REMARQUE:

- ✓ Seuls les administrateurs, les techniciens de maintenance et les ingénieurs du fabricant peuvent accéder à cette fonction.
- ✓ Le système mémorise toutes les modifications apportées à la configuration, même après la mise hors tension du système.

4.1 Accès à l'écran Configuration

- Appuyez sur la touche Marche/Arrêt située sur le côté gauche de l'analyseur pour mettre ce dernier sous tension.
- 2. Entrez le nom d'utilisateur et le mot de passe manuellement, puis appuyez sur 🛋.

Pour saisir le nom d'utilisateur à l'aide du scanner de codes-barres, appuyez d'abord sur puis numérisez le code-barres du nom d'utilisateur.

	Connexion ut.	
Nom d'ut.		
MdP		
		➡ Conn.
Util. rest. pack ét.:100 ,	jrs:30 🍋 🖡	2013-11-12 16: 20 🕐

Figure 4-1 Saisie du nom d'utilisateur et du mot de passe

3. Appuyez sur le bouton 🔀 de l'écran principal. Le système bascule alors vers l'écran Configuration.

4.2 Configuration système

Par défaut, le système affiche l'écran Configuration système une fois que vous avez appuyé sur le

bouton 🔀 de l'écran principal. Si vous vous trouvez à présent dans l'écran Configuration test,

appuyez sur Configuration système pour accéder à l'écran Configuration système.

Figure 4-2 Configuration - Ecran Configuration système

Vous pouvez effectuer les opérations suivantes :

4.2.1 Configuration imprimante

Ce menu vous permet de configurer l'imprimante utilisée par le système, les informations imprimées dans les rapports, le nombre de copies imprimées et les paramètres calculés à imprimer sur le dossier du patient.

REMARQUE:

Les paramètres calculés disponibles s'affichent toujours à l'écran.

- 1. Appuyez sur 🔄 pour accéder à l'écran Configuration imprimante.
- 2. Deux onglets sont disponibles : Configuration de base et Impression des paramètres calculés.
 - ◆ Configuration de base
 - 1) Appuyez sur l'onglet Configuration de base pour accéder à l'écran du même nom.

Config. imprimante Config. de base Rés. param. calc.					
	☑ Infos pat.	🗹 Rés. étalonnage	🗌 Plages réf.		
	Imprimante Imp	r. thermique 🛛 Impr.	USB		
	🗹 Impr. auto	Nbre de copies	1		
			✓ OK X Annul.		
Ċ	Util. rest. pack ét.:100 , j	rs:30		?	

Figure 4-3 Imprimante – Ecran Configuration de base

- 2) Dans l'écran Configuration de base :

 - ➤ Déterminez si les résultats d'étalonnage doivent être imprimés. La coche √ apparaît si l'option Résultats de l'étalonnage est sélectionnée. Par défaut, ces résultats sont imprimés ;
 - ➤ Déterminez si les plages de référence doivent être imprimées. La coche √ apparaît si l'option Plages de référence est sélectionnée. Par défaut, les plages de référence ne sont pas imprimées. Si l'option Plages de référence est sélectionnée, les plages de référence sont indiquées dans le rapport des échantillons patient et les plages acceptables sont affichées dans le rapport du test de contrôle qualité (CQ);

- Sélectionnez l'imprimante à utiliser. Deux options sont disponibles : Imprimante thermique et Imprimante USB. Le paramètre par défaut est Imprimante thermique ;
- Déterminez si l'impression automatique doit être activée ou non. La coche √ apparaît si Impression automatique est activée. Par défaut, l'impression automatique est activée ;
- Sélectionnez le nombre de copies. Deux options sont disponibles : 1 et 2. La valeur par défaut est 1.
- Appuyez sur OK pour accepter les modifications. Le système retourne alors à l'écran Configuration système.
- Configuration de l'impression des paramètres calculés
- Appuyez sur l'onglet Impression des paramètres calculés pour accéder à l'écran Configuration de l'impression des paramètres calculés.

Config. imprimante				
Config. de base Ré	s. param. calc.			
🗹 tHb(est)	✓ cH+	HCO3-act	HCO3-std	
BE(ecf)	BE(B)	BB(B)	✓ ctCO2	
✓ sO2(est)	🔽 pO2(A-a)	🔽 pO2(a/A)	🗹 RI	
✓ pO2/FIO2	✓ Ca++(7.4)	🗹 AnGap	✓ pH(T)	
✓ cH+(T)	✓ pCO2(T)	✓ pO2(T)	🗹 pO2(A-a)(T)	
🗹 pO2(a/A)(T)	RI(T)	✓ pO2(T)/FIO2		
	🗹 Т	out		
		~	OK X Annul.	
Util. rest. pack ét	.:100 , jrs:30		🏺 2013-11-12 16: 20 📀	

Figure 4-4 Imprimante – Ecran Configuration de l'impression des paramètres calculés

 Sélectionnez les paramètres de votre choix. La coche √ indique que le paramètre est sélectionné.

REMARQUE :

- ✓ Cochez la case **Tout** pour sélectionner tous les paramètres de l'écran.
- ✓ Le système n'imprime pas les paramètres calculés non disponibles sur la cartouche de test, même s'ils sont sélectionnés.
- Appuyez sur OK pour accepter les modifications. Le système retourne alors à l'écran Configuration système.

4.2.2 Configuration réseau

Ce menu vous permet de configurer les modes de communication, les modes de transmission et la manière dont l'analyseur est connecté au réseau.

Pour configurer le réseau, procédez comme suit :

- 1. Appuyez sur ipour accéder à l'écran Configuration réseau.
- 2. Cet écran inclut trois onglets : Communication, Réseau et WIFI.
 - Configuration du réseau
 - 1) Appuyez sur Communication pour accéder à l'écran Configuration communication.

	Configuration réseau	1
Communication	Réseau WIFI	
Protocole	HL7v2.4	
Trans. auto.	Mar.	
Réseau	LAN	
IP DMS	192 168 1	5
	~	OK X Annul.
Util. rest. pack ét.: 1	L00 , jrs:30	🏺 2013-11-12 16: 20 🗿

Figure 4-5 Réseau – Ecran Configuration communication

- 2) Dans l'écran Configuration communication, vous pouvez effectuer les actions suivantes :
 - Sélectionnez les protocoles de communication. Deux options s'offrent à vous : POCT1-A et HL7×2.4. L'option par défaut est POCT 1-A.
 - Déterminez si les résultats de l'échantillon patient doivent être transmis automatiquement. Deux options sont disponibles : Activé et Désactivé. Si vous sélectionnez Activé, les résultats de l'échantillon patient sont transmis automatiquement après chaque mesure. Le paramètre par défaut est Activé ;
 - Sélectionnez les modes de communication. Deux options sont disponibles : Réseau et WIFI. Le paramètre par défaut est Réseau ;
 - Saisissez l'adresse IP du SGD ou du SIH/LIS auquel l'analyseur est connecté.
- Appuyez sur OK pour accepter les modifications. Le système retourne alors à l'écran Configuration système.

• Configuration du réseau

1) Appuyez sur **Réseau** pour accéder au réseau - Ecran Configuration réseau.

	Configuration réseau				
Communication	Réseau	WI	-1		
DHC Adre	P sse IP statique	2			
IP	192	168	1	1	
Masque	255	255	255	0	
Pass.	192	168	1	1	
				/ OK X Annul.	
Util. rest. pac	k ét.:100 , jrs:30		4	🗖 🔱 2013-11-12 15: 36 🕘	

Figure 4-6 Réseau – Ecran Configuration réseau

 Sélectionnez le mode de connexion de l'analyseur au réseau. Deux options sont disponibles : DHCP (Dynamic Host Configuration Protocol) et Adresses IP statiques. Le paramètre par défaut est DHCP. Si ce dernier est sélectionné, les informations suivantes doivent être saisies : adresse IP, passerelle par défaut et masque réseau.

REMARQUE:

- L'adresse IP statique doit se trouver sur le même réseau que l'adresse IP du SGD ou du SIH/LIS.
- ✓ Les adresses IP des analyseurs connectés au même SGD ou SIH/LIS doivent être différentes.
- Ce n'est que lorsque le SGD ou le SIH/LIS et l'analyseur ont été connectés avec succès au réseau que l'analyseur transmet les données au SGD ou au SIH/LIS.
- Appuyez sur OK pour accepter les modifications. Le système retourne alors à l'écran Configuration système.

Connexion WIFI

1) Appuyez sur WIFI pour accéder à l'écran Configuration WIFI.

	Configuration réseau								
Co	mmunication	Réseau	WIFI						
	Nom	MdP	Intensité	Rechercher WIFI					
			-	Connecter WIFI					
				V OK X Annul.					
Ċ	Util. rest. pack ét	.:100 , jrs:30		💼 🛱 2013-11-12 15: 36 🕧					

Figure 4-7 Réseau - Ecran Configuration WIFI

- 2) Appuyez sur Rechercher WIFI afin que le système recherche automatiquement les réseaux et les affiche. Si le système affiche l'indication Verrouillage en regard du mot de passe réseau, vous devez saisir son mot de passe pour connecter le système au réseau.
- Cliquez sur le réseau auquel vous souhaitez vous connecter, puis appuyez sur Connexion WIFI.

REMARQUE :

Le réseau sélectionné doit se trouver sur le même réseau que le SGD ou le SIH/LIS.

4) Appuyez sur **Retour**. Le système retourne alors à l'écran Configuration système.

4.2.3 Configuration date et langue

Dans ce menu, vous pouvez régler l'heure et la date, le format de la date et la langue utilisée par l'analyseur pour l'affichage et l'impression.

Pour régler la date et la langue, procédez comme suit :

1. Appuyez sur pour basculer vers l'écran Configuration date et langue.

	Config. date et langue								
	Date	2013 Année 11 Lun 27 Jour							
	Hre	16 🔶 Hre 45 🌎 Min 26 🔷 Sec							
	Format date	Ct-MM-AAAA							
	Langue	Français							
		V OK X Annul.							
Ċ	Aucun pack d'ét. tro	uvé 🛛 🔯 2013-11-27 16: 45 📀							

Figure 4-8 Ecran Configuration date et langue

- 2. Dans l'écran Configuration date et langue :
 - Modifiez la date et l'heure du système.
 - Sélectionnez le format de la date. Trois formats sont disponibles : MM-JJ-AAAA, AAAA-MM-JJ et JJ-MM-AAAA. Le paramètre par défaut est AAA-MM-JJ ;
 - Sélectionnez la langue d'affichage et d'impression. La langue par défaut est le français.
- 3. Appuyez sur **OK** pour accepter les modifications. Le système retourne alors à l'écran Configuration système.

4.2.4 Configuration rétroéclairage et volume

Ce menu vous permet de définir la durée d'inactivité au-delà de laquelle le rétroéclairage est automatiquement désactivé, la luminosité du rétroéclairage, les tonalités des touches et le volume.

1. Appuyez sur pour accéder à l'écran Configuration rétroéclairage et volume.

_	Config.	. rétro. et volume
	Luminosité	
	Temp. éclairage	1 min plus tard
	Ton. touches	Mar.
	Volume	Moyen
		V OK X Annul.
ڻ ا	Util. rest. pack ét.:100 , jrs:30	The second secon

Figure 4-9 Ecran Configuration rétroéclairage et volume

- 2. Dans l'écran Configuration rétroéclairage :
 - > Réglez la luminosité du rétroéclairage à l'aide du curseur.
 - Sélectionnez la durée d'inactivité au-delà de laquelle le rétroéclairage est automatiquement désactivé. Les options suivantes sont disponibles : Jamais, 10 secondes, 1 minute, 3 minutes et 5 minutes. Le paramètre par défaut est 1 minute.

REMARQUE :

Le système bascule en mode veille une fois le rétroéclairage désactivé. Appuyez sur l'écran LCD pour reprendre le mode de fonctionnement normal.

- Réglez les tonalités des touches. Deux options sont disponibles : Activé et Désactivé. Si l'option Activé est sélectionnée et que le volume n'est pas coupé, le système émet un signal sonore après chaque pression sur une touche ;
- Sélectionnez le volume du système. Quatre options sont disponibles : Haut, Moyen, Bas et Silence. Le paramètre par défaut est Moyen.
- 3. Appuyez sur **OK** pour accepter les modifications. Le système retourne alors à l'écran Configuration système.

4.2.5 Diagnostics

Ce menu vous permet de diagnostiquer certains modules de l'analyseur pour vérifier son fonctionnement. Il vous permet de résoudre des problèmes.

REMARQUE :

Seuls les techniciens de maintenance et les ingénieurs du fabricant peuvent effectuer cette action.

4.2.6 A propos de l'analyseur

Le système contient des informations qui vous permettent d'en savoir plus sur votre analyseur et de contacter l'assistance technique en cas de besoin.

1. Appuyez sur **1** pour accéder à l'écran A propos de.

A propos								
	Nom inst. :	Analyseur chimique et gazom. sangu. i15						
	Tél. service : 800-830-7573							
	Adresse rés. :	www.edan.com.cn						
	EDAN EDA	N INSTRUMENTS, INC.						
		? Retour						
G	Util. rest. pack ét.:100 , jrs:3	0 🤚 🛱 2013-11-12 15: 37 🕐						

Figure 4-10 Ecran A propos de

- 2. Examinez les informations à l'écran.
- 3. Appuyez sur **Retour** pour accéder à l'écran Configuration système.

4.3 Configuration test

Appuyez sur le bouton **Configuration test** de l'écran Configuration pour accéder à l'écran Configuration test, dans lequel vous pouvez effectuer les opérations suivantes :

Figure 4-11 Configuration - Ecran Configuration test

4.3.1 Configuration verrouillage CQ

Ce menu vous permet de configurer le verrouillage CQ. Si la fonction Verrouillage CQ est activée, le système ne rend pas compte des résultats de test pour les paramètres qui ont échoué aux tests de contrôle qualité (CQ). Les résultats de ces paramètres sont signalés par les caractères xxx. Si la fonction de verrouillage CQ est désactivée, le système rapporte les résultats de test pour les paramètres qui ont échoué aux tests de contrôle qualité (CQ), et les résultats de test pour ces paramètres sont indiqués par les caractères ***. Par défaut, la fonction de verrouillage CQ est activée.

Pour configurer le verrouillage CQ, procédez comme suit :

1.

Appuyez sur **S** pour accéder à l'écran Configuration verrouillage CQ.

_	Config. verrouillage CQ								
	☑ Ver. CQ								
l		✓ OK X Annul.							
Ċ	Util. rest. pack ét.:100 , jrs:30	💼 🛱 2013-11-12 15: 37 🕧							

Figure 4-12 Ecran Configuration verrouillage CQ

- 2. Déterminez si la fonction de verrouillage CQ doit être activée. La coche $\sqrt{apparaît}$ si la fonction de verrouillage CQ est activée.
- 3. Appuyez sur OK pour accepter les modifications. Le système retourne alors à l'écran Configuration test.

4.3.2 Configuration informations patient

Ce menu vous permet de sélectionner les paramètres qui s'affichent dans l'écran Modifier les informations patient lors de chaque test d'échantillon patient. Les paramètres affichés par défaut sont ID patient, Température, FIO2 et ID opérateur. Le tableau ci-dessous dresse la liste des paramètres relatifs aux informations patient.

Paramètre	Plage	Résolution	Unité
ID patient	1 - 16 chiffres	N/A	N/A
ID opérateur	1 - 16 chiffres	N/A	N/A
ID échantillon	1 - 16 chiffres	N/A	N/A
Toma énotono	14,0 - 44,0	0,1	°C
remperature	57,2 - 111,2	0,1	°F
Sexe	Homme, Femme, /	N/A	N/A

Paramètre	Plage	Résolution	Unité
tIII (háma alabina	1,0 - 26,0	0,1	g/dl
tHD (nemoglobine	10 - 260	1	mg/dL
totale)	0,6 - 16,1	0,1	mmol/L
FIO	0,21 - 1,00	0,01	X.XX
FIO ₂	21 - 100	1	%
МСНС	MCHC 20.0 27.0		
(concentration	concentration 29,0 - 37,0		g/dL
corpusculaire			
moyenne en	moyenne en 290 - 370		
hémoglobine)			U
RQ (quotient	0.50 0.00	0.01	
respiratoire)	respiratoire) 0,70 - 2,00		X.XX
Туре	Type		27/1
d'hémoglobine	Adulte, Enfant, Nouveau-né	N/A	N/A
	LR/RR/LB/RB/LF/RF/Moelle/		
	Cuir chevelu/LHF/		
	RHF/LH/RH/AIC, Cathéter PA,		
	CPB ou autre, où :		
	LR = Radial gauche		
	RR = Radial droit		
	LB = Brachial gauche		
	RB = Brachial droite		
	LF = Fémoral gauche		
Puncture site	RF = Fémoral droite	N/A	N/A
	LHF = Doigt gauche		
	RHF = Doigt droit		
	LH = Talon gauche		
	RH = Talon droit		
	AIC = Cathéter artériel fixe		
	CPB = Pontage cardio-pulmonaire		
	PA Catheter = Cathéter PA		
	Autre = Autre		
Bypass	Pompe désactivée / Pompe activée	N/A	N/A
	Air amb., Masque, P-T, CN, Vent., Ballon,		
	Hood ou Autre, où :		
	Air amb = Air ambiant		
	Masque = Masque		
Mode O.	P-T = Pièce en T	NI/A	N/A
Widde O ₂	CN = Canule nasale	IN/A	1N/A
	Vent. = Ventilateur		
	Ballon = Ballon (réanimation manuelle)		
	Hood = Enceinte de Hood		
	Autre = Autre		

Paramètre	Plage	Résolution	Unité
I/E Ratio	0,2 - 9,9 / 0,2 - 9,9	0,1	X.XX
	Aucun, SIMV, PSV, PCV, CMV/AC, CPAP,		
	PCIVR ou BIPAP, où :		
	Aucun = Aucun		
	SIMV = Ventilation assistée contrôlée		
	intermittente		
	PSV = Ventilation en aide inspiratoire		
Mode de	PCV = Ventilation en pression contrôlée		NI/A
ventilation	CMV/AC = Ventilation mécanique contrôlée/	1N/A	IN/A
	commande d'assistance		
	CPAP = Ventilation à pression positive continue		
	PCIVR = Ventilation à pression contrôlée et à		
	ratio inversé		
	BIPAP = Ventilation spontanée en pression		
	positive bidirectionnelle		
Pplat (Pression de	0 100	1	am II O
plateau)	0 - 100	1	cm_2O
MVol (Volume par	0 120	1	Inm
minute)	0 - 120	1	Lpin
PIP (Pression			
inspiratoire	0 - 140	1	cmH ₂ O
maximale)			
Liter Flow	0 - 300	1	Lpm
TVol (Volume	0 - 4000	1	mI /ka
courant)	0 - 4000	1	IIIL/ Kg
PS (Aide	0 00 0	0.1	omH.O
inspiratoire)	0 - 33,3	0,1	
PEEP (Pression	0 - 50	1	cmH ₂ O
expiratoire positive)	0-30	1	
Rate	0 - 155	1	Bpm
CPAP (Pression	0 - 50	1	cmH_O
positive continue)	0-30	1	
Bi-Level Pressure	0,2 - 9,9 / 0,2 - 9,9	0,1	X.XX

REMARQUE:

- Les informations patient ne contiennent aucune donnée de pression barométrique.
 Si le capteur de pression barométrique ne fonctionne pas correctement, le système n'affiche pas les résultats des paramètres relatifs à l'oxygène.
- ✓ Les éléments sélectionnés sont imprimés dans les rapports d'échantillons patient si l'option Info Patient est sélectionnée à la section 4.2.1 Configuration imprimante.

Pour sélectionner les informations patient requises, procédez comme suit :

- 1. Appuyez sur Dour accéder à l'écran Configuration informations patient.
- Appuyez sur Info Patient 1 et sélectionnez les paramètres souhaités. La coche √ indique que le paramètre est sélectionné.

	C	onfig. infos patie	ent	
	Inf. pat 1 Inf. pat 1	2		
	✓ ID patient	 ID opérat. 	🔲 ID échant.	
	Sexe	 BodyTemperature 	FIO2	
	RQ	🔲 tHb	🗆 мснс	
		Tout		
			✓ OK X Annul.	
Ċ	Util. rest. pack ét.:100 , jrs:30		💼 🛱 2013-11-12 15: 36 (?

Figure 4-13 Ecran Info Patient 1

 Appuyez sur Info Patient 2 et sélectionnez les paramètres souhaités. La coche √ indique que le paramètre est sélectionné.

	Config. infos patient								
	Inf. pat 1 Inf. pat 2								
	🗍 Hb Туре	🗍 I/E Ratio	D PS	СРАР					
	Puncture Site	MVol	🗍 Pplat	Bilevel Pressure					
	Bypass	Liter Flow	PEEP	PIP					
	O2 Mode	🗍 TVol	Rate	Vent Mode					
		🗍 T	out						
V OK X Annul.									
Ċ	Util. rest. pack ét.:1	00 , jrs:30		💼 🛱 2013-11-12 15: 36 📀					

Figure 4-14 Ecran Info Patient 2

REMARQUE:

Cochez la case Tout pour sélectionner tous les paramètres sur chaque écran.

4. Appuyez sur **OK** pour accepter les modifications. Le système retourne alors à l'écran Configuration test.

4.3.3 Configuration plages de référence

Dans ce menu, vous pouvez définir la plage de référence de chaque paramètre mesuré. Trois options sont disponibles : Plage de référence 1, Plage de référence 2 et Plage de référence 3. Le paramètre par défaut est Plage de référence 1. Un résultat en dehors de la plage de référence est signalé par une flèche haut/bas. Les plages de référence sont réglées en usine comme plages de mesure de chaque paramètre mesuré. Les valeurs non comprises dans les plages de référence ne sont pas signalées par une flèche haut/bas. Les plages de référence doivent donc être définies conformément aux procédures internes de votre établissement. Les plages de référence pouvant varier selon des facteurs démographiques tels que l'âge, le sexe et les antécédents, il est recommandé de définir les plages de référence en fonction de la population testée.

Pour définir les plages de référence, procédez comme suit :

1. Appuyez sur pour accéder à l'écran Configuration plages de référence.

	Config. plages de réf.											
		P1		P2		Р3						
ſ		Faible	Fort			Faible	Fort			Faible	Fort	
	рН	6.500	8.000]	Ca++	0.25	2.50	mmol/L	Cre	18	1768	µmol/L
	pO2	10	700	mmHg	Cl-	65	140	mmol/L	BUN	1.0	50.0	mmol/L
	pCO2	10.0	150.0	mmHg	Glu	1.1	38.9	mmol/L	TCO2	1	100	mmol/L
	Na+	100	180	mmol/L	Lac	0.30	20.00	mmol/L				
	K+	2.0	9.0	mmol/L	Hct	10	75	%				
	Sélection plage P1 P2 P3 K Annul. X Annul.							nnul.				
	Ċ	Util. r	est. pacl	< ét.:100 , ji	rs:30				i	2013-11-	-12 16:	20 🕐

Figure 4-15 Ecran Configuration plages de référence

- 2. Sélectionnez la plage de référence souhaitée, puis modifiez les limites des paramètres visés.
- 3. Appuyez sur **OK** pour accepter les modifications. Le système retourne alors à l'écran Configuration test.

REMARQUE:

- ✓ Si des valeurs inacceptables sont saisies, le système affiche la plage appropriée.
- ✓ Les limites saisies sont enregistrées dans le système, même après son arrêt.

4.3.4 Configuration unités

Cette fonction vous permet de sélectionner les unités des paramètres mesurés, des paramètres calculés et des paramètres relatifs aux informations patient.

Paramètre	Unité par défaut	Autres unités
Ca ⁺⁺	mmol/L	mg/dL
pCO ₂	mmHg	kPa
pO ₂	mmHg	kPa
Glu	mmol/L	mg/dL
Lac	mmol/L	mg/dL
Hct	%	X.XX
Cre	µmol/L	mg/dL
BUN	mmol/L	mg/dL
tHb(est)	g/dL	g/L,mmol/L
sO ₂ (est)	%	X.XX
$pO_2(A-a)$	mmHg	kPa
$pO_2(a/A)$	X.XX	%
RI	X.XX	%
pO_2/FIO_2	mmHg	mmHg/%, kPa, kPa/%
Ca ⁺⁺ (7,4)	mmol/L	mg/dL
$pCO_2(T)$	mmHg	kPa
$pO_2(T)$	mmHg	kPa
$pO_2(A-a)(T)$	mmHg	kPa
$pO_2(a/A)(T)$	X.XX	%
RI(T)	X.XX	%
$pO_2(T)/FIO_2$	mmHg	mmHg/%, kPa, kPa/%
Température	°C	°F
FIO ₂	X.XX	%
tHb	g/dL	g/L, mmol/L
MCHC	g/dL	g/L
Pression barométrique/partielle	mmHg	kPa

Tableau 4-2	Unités des	paramètres
-------------	------------	------------

Pour sélectionner les unités souhaitées pour les paramètres, procédez comme suit :

1.

Appuyez sur pour accéder à l'écran Configuration unités.

2. Appuyez sur Unités 1, puis sélectionnez les unités souhaitées pour les paramètres dont vous souhaitez modifier les unités.

Unités 1 Unités 2	s unites
pCO2,pO2,pO2(A-a),pCO2(T),pO2(T),pO2(A-a)(T),Pression	Lac
mmHg 🔽	mmol/L
Ca++,Ca++(7.4)	Hct
mmol/L	%
Température	Cre
°C 🔽	µmol/L
Glu	BUN
mmol/L	mmol/L
	V OK X Annul.
Util. rest. pack ét.:100 , jrs:30	5 2013-11-12 15: 36

Figure 4-16 Ecran Configuration unités 1

3. Appuyez sur **Unités 2**, puis sélectionnez les unités souhaitées pour les paramètres dont vous souhaitez modifier les unités.

tille tille (art)	=02(=/A) =02(=/A)(T)
	×.^^
RI,RI(T)	FIO2
x.xx	x.xx
pO2/FIO2,pO2(T)/FIO2	МСНС
mmHg 🔽	g/dL
sO2(est)	
%	
	V OK X Annu

Figure 4-17 Ecran Configuration unités 2

4. Appuyez sur **OK** pour accepter les modifications. Le système retourne alors à l'écran Configuration test.

REMARQUE :

Les résultats enregistrés dans le système sont automatiquement convertis pour correspondre aux nouvelles unités.

4.3.5 Configuration facteurs de corrélation

Les facteurs de corrélation vous permettent de comparer les résultats obtenus dans le système à ceux d'un autre système. Les plages de pente et de décalage de chaque paramètre sont répertoriées dans le tableau 4-3.

Paramètre	Plage de pente	Plage de décalage
pН	0,800 - 1,200	+ /- 1,000
nCO.	0.800 1.200	+ /- 10,0 mmHg
pCO_2	0,800 - 1,200	+ /- 1,33 kPa
pO ₂	0.800 1.200	+ /- 40 mmHg
	0,800 - 1,200	+ /- 5,33 kPa
Na ⁺	0,800 - 1,200	+/- 30,0 mmol/L
K^+	0,800 - 1,200	+/- 1,00 mmol/L
Cl	0,800 - 1,200	+/- 20,0 mmol/L
Ca ⁺⁺	0,800 - 1,200	+/- 0,500 mmol/L
Glu	0.800 1.200	+/- 50,0 mg/dL
	0,800 - 1,200	+/- 2,78 mmol/L
Lac	0 800 1 200	+/- 4,00 mmol/L
	0,800 - 1,200	+/- 36,0 mg/dL
Cre	0,800 - 1,200	+/- 30 µmol/L
BUN	0,800 - 1,200	+/- 1,8 mmol/L
Hct	0,800 - 1,200	+/- 20 % PCV

Tableau 4-3 Facteurs de corrélation

1. Appuyez sur pour accéder à l'écran Configuration facteurs de corrélation.

	Pente	Décal.			Pente	Décal.	
рН	1.000	0.000]	CI-	1.000	0.000	mmol/L
pO2	1.000	0.000	mmHg	Glu	1.000	0.000	mmol/L
pCO2	1.000	0.000	mmHg	Lac	1.000	0.000	mmol/L
Na+	1.000	0.000	mmol/L	Hct	1.000	0.000	%
K+	1.000	0.000	mmol/L	Cre	1.000	0.000	µmol/L
Ca++	1.000	0.000	mmol/L	BUN	1.000	0.000	mmol/L
					~	ОК	X Annul.

Figure 4-18 Ecran Configuration facteurs de corrélation

- 2. Modifiez les valeurs des pentes et des décalages pour les paramètres dont vous souhaitez modifier les facteurs de corrélation.
- 3. Appuyez sur **OK** pour accepter les modifications. Le système retourne alors à l'écran Configuration test.

REMARQUE :

- ✓ La valeur par défaut est de 1,0 pour toutes les pentes et de 0,0 pour tous les décalages.
- La modification des facteurs de corrélation influence les futurs résultats du test, mais n'affecte pas les anciens résultats de test enregistrés.

4.3.6 Configuration Hct

Si vous mesurez uniquement les niveaux d'Hct pour les échantillons de sang total, ce menu vous permet de sélectionner les anticoagulants.

1. Appuyez sur pour accéder à l'écran Configuration Hct.

_	Configuratio	on Hct
	Hct Héparine lithium 🔽	
		V OK X Annul.
	Util. rest. pack ét.:100 , jrs:30	💶 🖊 2013-11-12 15: 37 🕘

Figure 4-19 Ecran Configuration Hct

- Sélectionnez l'anticoagulant souhaité. Trois options sont disponibles : K₂EDTA, K₃EDTA, Héparine de lithium. Le paramètre par défaut est Héparine de lithium.
- 3. Appuyez sur **OK** pour accepter les modifications. Le système retourne alors à l'écran Configuration test.

4.3.7 Configuration du simulateur interne

Ce menu vous permet de déterminer si vous souhaitez effectuer le test sur simulateur interne et de définir l'heure d'exécution quotidienne du test.

1. Appuyez sur pour accéder à l'écran Configuration simulateur interne.

	C	Config. simulateu	ir interne
	Heure	1 Hre 0	🕈 Min 🕕 🗲 Sec
			✓ OK X Annul.
Ċ	Util. rest. pack ét.	100 , jrs:30	💶 🕴 2013-11-12 16: 20 📀

Figure 4-20 Ecran Configuration simulateur interne

- Déterminez si vous souhaitez effectuer le test sur simulateur interne. La coche $\sqrt{apparaît}$ si 2. l'option Simulateur interne est sélectionnée. Par défaut, cette option est sélectionnée.
- Si l'option Simulateur interne est sélectionnée, saisissez l'heure d'exécution du test. L'heure 3. est définie par défaut sur 01:00:00.
- Appuyez sur OK pour accepter les modifications. Le système retourne alors à l'écran 4. Configuration test.

4.3.8 Configuration de l'étalonnage

REMARQUE:

Si un ou plusieurs paramètres sélectionnés échouent aux tests d'étalonnage, le test s'interrompt.

1. Appuyez sur pour accéder à l'écran Configuration étalonnage.

Config. étalon						
	🗍 рН	pO2	DCO2	🗋 Na+		
	🗆 K+	🗌 Ca++	CI-	🗍 Glu		
	🗌 Lac	🗌 Hct	Cre	🗆 BUN		
	🗖 тсо2					
	Tout					
				✓ OK X Annul.		
Ċ	Util. rest. pack	ét.:100 , jrs:30		💼 🏺 2013-11-12 16: 20 🧃		

Figure 4-21 Ecran Configuration étalonnage

- 2. Sélectionnez les paramètres de votre choix. La coche $\sqrt{}$ indique que le paramètre est sélectionné. Cochez la case Tout pour sélectionner tous les paramètres de l'écran.
- 3. Appuyez sur OK pour accepter les modifications. Le système retourne alors à l'écran Configuration test.
Chapitre 5 Analyse du patient

REMARQUE:

Prenez les mesures de sécurité adéquates lors de l'utilisation d'échantillons biologiques (par exemple, portez des gants approuvés, etc.).

5.1 Prélèvement et préparation des échantillons

5.1.1 Prélèvement des échantillons

Les échantillons de sang doivent être prélevés conformément aux directives médicales appropriées contenant des informations détaillées sur le prélèvement, telles que le choix du site, les procédures de prélèvement, les dispositifs d'échantillonnage, la manipulation des échantillons, etc. Les techniques stériles doivent être suivies pour éviter toute contamination du site.

AVERTISSEMENT

Manipulez les échantillons de sang et les dispositifs de prélèvement avec soin, et utilisez des gants de protection approuvés pour éviter tout contact direct avec les échantillons.

REMARQUE:

- ✓ Il est recommandé de n'utiliser que des échantillons de sang total frais.
- Lorsqu'ils sont pris en compte pour une analyse des électrolytes, les échantillons de sang veineux ne doivent pas être prélevés à partir d'un cathéter veineux central contenant du sulfadiazine d'argent ou de la chlorhexidine, car ils ont une influence considérable sur les niveaux de sodium.
- ✓ Les échantillons doivent être prélevés par des professionnels formés.
- ✓ Pour les échantillons veineux mêlés, le système affiche uniquement le résultat de pO_2 .

5.1.2 Anticoagulants

Seuls les dispositifs d'échantillonnage contenant une quantité suffisante d'héparine (équilibrée) saturée en calcium ou d'héparine de lithium comme anticoagulant doivent être utilisés pour prélever des échantillons de sang total. Si l'héparine (équilibrée) saturée en calcium est utilisée comme anticoagulant, le rapport héparine/sang minimal doit être de 2,3 unités d'héparine par 1,0 mL d'échantillon de sang. Si un échantillon fait l'objet d'une analyse de calcium ionisé, le rapport héparine/sang maximal doit être de 15 unités d'héparine par 1,0 mL d'échantillon de sang ; sinon, il doit être de 50 unités d'héparine par 1,0 mL d'échantillon de sang.

ATTENTION

Si l'échantillon de sang contient des caillots, jetez-le et prélevez de nouveaux échantillons.

REMARQUE :

N'utilisez pas les anticoagulants suivants : EDTA, citrate et oxalate, car ils influencent considérablement les résultats du test pour le pH et les électrolytes.

5.1.3 Dispositifs et volume de prélèvement

Les échantillons peuvent être introduits dans le système à l'aide des dispositifs suivants : seringues et tubes capillaires. Il est recommandé d'utiliser des tubes capillaires de gaz sanguin VITREX[®] de faible volume, remplis de 175 μ L (référence : 182413).

REMARQUE :

- ✓ Le système utilise des échantillons de 110 µL pour l'analyse et s'assure qu'il peut aspirer une quantité suffisante d'échantillon.
- \checkmark Le volume de remplissage minimal pour une seringue de 1 mL est de 500 μ L.
- \checkmark Le volume de remplissage minimal pour une seringue de 2 mL est de 800 μ L.
- \checkmark Le volume de remplissage minimal pour une seringue de 5 mL est de 1,5 mL.
- Délogez les bulles de la seringue et couvrez cette dernière dès que l'échantillon est prélevé. N'utilisez jamais de liège pour couvrir la seringue.
- Un tube capillaire doit être rempli à pleine capacité et soigneusement couvert.
 N'utilisez jamais de liège ou de l'argile pour couvrir le tube capillaire.

5.1.4 Remarques

Observez les remarques ci-dessous pour assurer l'exactitude des résultats du test :

- 1. Couvrez l'échantillon immédiatement après son prélèvement pour éviter toute contamination par l'air.
- 2. Mélangez soigneusement les échantillons de sang avant leur introduction.
- Assurez-vous que les échantillons de sang sont exempts de caillots, sous peine d'obtenir des résultats inexacts.

- 4. Effectuez immédiatement le test une fois l'échantillon prélevé pour obtenir des résultats plus précis. Mesurez les échantillons de gaz du sang et de Ca⁺⁺ dans un délai de 10 minutes et ceux d'autres analytes dans un délai de 30 minutes.
- 5. Les échantillons utilisés constituent des déchets biologiques dangereux et doivent être manipulés conformément aux réglementations locales en vigueur.

5.2 Analyse du patient

REMARQUE :

Assurez-vous que la date et l'heure affichées sont correctes avant chaque test, car elles font partie intégrante des données d'échantillon patient. Contactez l'administrateur si la date et/ou l'heure sont incorrectes.

5.2.1 Procédures d'analyse du patient

- Appuyez sur la touche Marche/Arrêt située sur le côté gauche de l'analyseur pour mettre ce dernier sous tension.
- 2. Entrez le nom d'utilisateur et mot de passe manuellement, puis appuyez sur

Entrez	le	nom	d'utilisateur	et	le	mot	de	passe	manuellement,	appuyez	sur	
puis nu	mér	isez le	code-barres of	du n	om	d'utili	sate	ur.				

	Connexion ut.	
Nom d'ut.		
MdP		
		➡ Conn.
Util. rest. pack ét.:100 ,	jrs:30 🏾 🖷 🏺	2013-11-12 16: 20 🕐

Figure 5-1 Saisie du nom d'utilisateur et du mot de passe

 Appuyez sur le bouton correspondant au type d'échantillon de sang dans l'écran principal. La coche √ apparaît si le bouton est sélectionné. Le type par défaut est Artériel.

Figure 5-2 Ecran principal

ATTENTION

Assurez-vous que le bouton de type d'échantillon sélectionné correspond à l'échantillon de sang, sous peine d'obtenir un résultat inexact.

4. Appuyez sur **Numériser le code-barres**, puis numérisez le code-barres sur une nouvelle pochette de cartouche.

Si le code-barres est correctement numérisé, le système émet un signal sonore et le scanner est automatiquement éteint. Si les données numérisées sont valides, le système affiche l'écran de la procédure suivante. Si les données numérisées ne sont pas valides, un message s'affiche pour vous avertir.

5. Ouvrez la pochette en aluminium et retirez-en la cartouche.

- ✓ Evitez de déchirer le code-barres de la pochette en aluminium.
- ✓ Pour introduire l'échantillon à l'aide d'un tube capillaire, insérez un adaptateur capillaire dans l'orifice de remplissage une fois la cartouche retirée.
- 6. Roulez la seringue ou le tube capillaire entre les mains et retournez-le/la délicatement plusieurs fois pour bien mélanger l'échantillon.

Figure 5-3 Mélange de l'échantillon et insertion de la cartouche

REMARQUE:

- ✓ Pour garantir l'exactitude des résultats de test, mélangez soigneusement l'échantillon avant de l'introduire.
- Pour garantir l'exactitude des résultats de test, vérifiez que des bulles ou des caillots ne sont pas piégés dans l'échantillon.
- 7. Insérez la seringue ou le tube capillaire dans l'orifice de remplissage de la cartouche.

REMARQUE:

- ✓ Si vous utilisez une seringue, jetez les 2 premières gouttes d'échantillon de sang, puis retirez-en l'aiguille avant de l'insérer dans l'orifice de remplissage.
- ✓ Si vous utilisez un tube capillaire, insérez-le directement dans l'adaptateur jusqu'à ce que le tube atteigne l'interface entre l'adaptateur et la cartouche.
- 8. Insérez délicatement la cartouche dans le port correspondant, puis appuyez soigneusement dessus pour vous assurer qu'elle est bien en place.

Si la cartouche est valide, le témoin du port de la cartouche s'allume en vert et le système aspire automatiquement l'étalon. Dans le cas contraire, le témoin s'allume en rouge, la cartouche est éjectée et un message s'affiche pour vous avertir.

- ✓ N'injectez jamais l'échantillon. Il sera aspiré automatiquement.
- ✓ La cartouche ne peut être retirée de l'analyseur qu'une fois la mesure terminée.

 Entrez les informations sur le patient. L'écran qui s'affiche dépend de l'option que vous avez sélectionnée à la section 4.3.2 Configuration informations patient. L'écran de configuration des informations patient par défaut est illustré ci-dessous :

	Saisir les in	fos patient		
Infos pat.1				
ID patient		ID opérat1		
Température	°C	FIO2		
			ОК	
Aspiration de l'étalon.				
Util. rest. pack ét.	:100 , jrs:30	🦷 🏺	2013-11-12 15: 37	0

Figure 5-4 Saisie des données patient

- ✓ Il n'est pas nécessaire de saisir tous les paramètres ci-dessus. Vous pouvez appuyer sur OK à tout moment.
- ✓ Si aucun paramètre n'est sélectionné à la section 4.3.2 Configuration informations patient, le système bascule vers l'écran Aspiration de l'étalon une fois la cartouche de test correctement insérée.
- Le système ne peut pas revenir à l'écran de saisie des informations patient une fois que vous avez appuyé sur **OK**. Les informations patient doivent être modifiées dans la base de données d'échantillons patient.

- 10. Appuyez sur OK. Le système bascule vers les écrans suivants :
 - a). Si le système aspire un étalon, il bascule vers l'écran suivant :

Figure 5-5 Aspiration de l'étalon...

b). Si le système étalonne les capteurs, le système bascule vers l'écran ci-dessous :

	Etalonnage				
	Patientez		05s		
Ģ	Ne pas retirer la cartouche	·•• 🖗	2013-11-12	16: 20	2

Figure 5-6 Etalonnage en cours

c). Si le système est en cours échantillonnage, il bascule vers l'écran ci-dessous :

Figure 5-7 Echantillonnage...

d). Si le système analyse des échantillons patient, il bascule vers l'écran ci-dessous :

	Mesure			
	Patientez	1	20s	
Ċ	Ne pas retirer la cartouche	S	2013-11-12 16: 20	0

Figure 5-8 Mesure en cours

e). Si le test est terminé, le système bascule vers l'écran ci-dessous :

Mesuré	Calculé	Etalonnage			
Paramètre	Résultat	Un	ité	Plage référence	
рН	7.361			[6.500-8.000]	4
pO2	90	mn	nHg	[10-700]	
pCO2	38.3	mn	nHg	[10.0-150.0]	
Na+	141	mm	iol/L	[100-180]	
K+	3.8	mm	nol/L	[2.0-9.0]	
				🖨 Acc. 🔄 Ir	npr

Figure 5-9 Résultats de l'échantillon

- A la fin du test, le voyant du port de la cartouche s'éteint, le message « Veuillez retirer la cartouche » s'affiche dans la barre d'état au bas de l'écran et la cartouche est éjectée.
- Si l'écran est resté inactif pendant 10 secondes une fois le test terminé, les résultats du test s'affichent automatiquement, même si vous n'appuyez pas sur **OK**.
- ✓ Si la température du patient est saisie, les résultats du test s'affichent à 37 °C et à la température du patient.
- ✓ Si la fonction Transmission automatique est activée à la section 4.2.2 Configuration réseau, les résultats de l'échantillon patient sont transmis automatiquement au SGD.
- Si la fonction Impression automatique est sélectionnée à la section 4.2.1 Configuration imprimante, les résultats de l'échantillon patient sont imprimés automatiquement. Dans le cas contraire, appuyez sur **Imprimer** pour imprimer les résultats du test.
- 11. Examinez les résultats du test. Le système affiche les résultats des paramètres mesurés par défaut.

Appuyez sur Calculé pour afficher	les résultats des	paramètres calculés.
-----------------------------------	-------------------	----------------------

Mesuré	Calculé Etalonnage	
Paramètre	Résultat	Unité
tHb(est)	15.6	g/dL
cH+	39.8	nmol/L
HCO3-act	21.8	mmol/L
HCO3-std	22.5	mmol/L
BE(ecf)	-3.0	mmol/L
		🖨 Acc. 🖶 Impr

Figure 5-10 Paramètres calculés

<u>.</u>	Rés. échant.
Mesuré	Calculé Etalonnage
Paramètre	Réu.ou éch.
рН	ок
pO2	ок
pCO2	ок
Na+	ОК
K+	ок
	🖨 Acc. 🖶 Impr.
Util. rest	pack ét.:100 , jrs:30 🎩 📮 📛 2013-11-12 15: 35

Appuyez sur **Etalonnage** pour afficher les résultats d'étalonnage.

Figure 5-11 Paramètres d'étalonnage

Des symboles tels que > peuvent apparaître dans l'écran des résultats. Reportez-vous à la section 5.2.2 Description des symboles de résultat pour comprendre leur signification.

AVERTISSEMENT

Ne prenez jamais de décisions thérapeutiques en fonction des résultats de test contenant les symboles décrits à la section 5.2.2 Description des symboles de résultat.

12. Retirez la cartouche de test du système.

13. Appuyez sur Accueil pour retourner à l'écran principal.

Le contenu d'un rapport d'échantillons patient varie selon le type de cartouche de test que vous avez utilisé, les options sélectionnées aux sections 4.2.1 Configuration imprimante et 4.3.2 Configuration informations patient, ainsi que les erreurs et alarmes détectées par le système pendant la mesure. Le tableau ci-dessous fournit un exemple de rapport d'échantillons patient :

EDAN i15	
ID système	201303200023
Type de rapport	Echantillon patient
Type d'échantillon	Artériel
Heure d'impression	2012-03-20 15:20:00
Heure du test	2012-03-20 15:10:00
ID patient	88888
ID opérateur	55555

Infor	mation	Patien	t					
Tempé	rature		37	° C				
Sexe			Femme					
tHb			30	30 g/dL				
FIO_2			20					
MCHC			g/dL					
RQ								
Hb ty	ре		Adulte	Adulte				
Punct	ure sit	е	LR (Rad	dial gauche)				
Bypas	S		Pompe (désactivée				
$O_2 \mod$	de		Ĩ					
I/E R	latio		0/0	0/0				
Vent	mode		Aucun					
Résul	tats de	l'éta	lonnage					
рН	Echec							
pCO_2	OK							
$p0_{2}$	OK							
Na^{+}	OK							
\mathbf{K}^{+}	OK							
Ca++	OK							
$C1^{-}$	OK							
Hct	OK							
Param	ètres m	lesurés						
pН								
pCO_2	XXX		mmHg					
$p0_2$	70,0		mmHg					
Nat	???		mmol/L					
\mathbf{K}^{+}	1,00	\downarrow	mmo1/L					
Ca ⁺⁺	2.00	↑	mmo1/L					
$C1^{-}$	_, 00 >	127	mmo1/I					
Hct	, <	35	%					
		00						
Plage	s de ré	férenc	e					
nH	[7 35	- 7 45	-					
$p_{\rm CO_{\circ}}$	[35 0	- 45 0	′」)] mmH	Q				
$p = 0_2$	[80 0	- 105	,	o o				
po_2 Na ⁺	[138 (,105 ח – 116		5 1 /I				
K+	[136, 0 - 140, 0] III [350 - 400] mr			1/I				
и Са++	LJ, JU [1 19	- 1 20		1/L				
Ja	$\lfloor 1, 1 \rfloor$	- 1, 32		L/L				

-			
	C1 ⁻ [98	8 - 109]	mmo1/L
	Hct [3	8 - 51]	%
	Paramètre	es calculés	
	cH^{+}	15,0	nmol/L
	pH(T)	7,0	
	$pCO_{2}(T)$	15,0 ***	mmHg
	$p0_{2}(T)$	20,0	mmHg
	HCO ₃ act	3, 5	mmol/L
	HCO ₃ std	4,0	mmo1/L
	BE(ecf)	20,0	mmol/L
	Ca ⁺⁺ (7, 4)	2,30	mmo1/L

5.2.2 Description des symboles de résultat

Le tableau suivant répertorie les symboles susceptibles d'apparaître à l'écran :

Symbole	Description
> ou <	Le résultat est supérieur ou inférieur à la plage de mesures.
1 ou ↓	Le résultat est supérieur ou inférieur à la plage de référence.
	L'étalonnage du paramètre mesuré échoue.
VVV	Le paramètre mesuré échoue aux tests de contrôle qualité (CQ), et la fonction de
ΛΛΛ	verrouillage CQ est activée dans Configuration.
	Le paramètre mesuré échoue aux tests de contrôle qualité (CQ), et la fonction de
	verrouillage CQ est désactivée dans Configuration.
***	Le résultat du paramètre calculé est valide, mais le paramètre mesuré servant à
	déterminer ce paramètre calculé échoue aux test de contrôle qualité (CQ), et la
	fonction de verrouillage CQ est désactivée dans Configuration.
???	Le résultat du paramètre mesuré n'est pas valide.

REMARQUE :

- ✓ Le résultat de test non valide pour un paramètre calculé ne s'affiche pas à l'écran.
- ✓ Le résultat de test valide pour un paramètre calculé ne s'affiche pas à l'écran si le paramètre mesuré servant à déterminer le résultat échoue aux tests de contrôle qualité (CQ), et la fonction de verrouillage CQ est activée dans Configuration.

5.3 Base de données d'échantillons patient

Par défaut, la base de données d'échantillons patient affiche les données d'échantillon patient du dernier mois et peut stocker jusqu'à 10 000 entrées. Le système affiche 50 éléments de données sur chaque page. Appuyez sur **Préc.** ou sur **Suivant** pour faire défiler les écrans des entrées de données affichées. Lorsque 80 % de l'espace est occupé, le système vous invite à exporter les

données stockées vers un disque amovible (par exemple, une clé USB). Si les données ne sont pas exportées, le système continue d'enregistrer les nouvelles données. Lorsque la base de données est pleine, le système vous invite toujours à exporter les données. Si les données ne sont toujours pas exportées, le système supprime automatiquement les anciennes données pour en stocker de nouvelles. Les opérations suivantes peuvent être effectuées dans la base de données d'échantillons patient : transmission des données d'échantillon patient vers le système de gestion de données (SGD) ou le SIH/LIS via une connexion Wi-Fi ou le réseau, exportation des données d'échantillon patient vers un disque amovible (par exemple, une clé USB), affichage des détails relatifs aux données d'échantillon patient, modification des informations patient, recherche et impression des données d'échantillon patient, etc.

REMARQUE:

- ✓ Seules les données d'informations patient peuvent être modifiées.
- ✓ Les résultats du test pour les paramètres calculés peuvent être modifiés en raison d'une altération des données d'informations patient.

Dans l'écran Base de données, appuyez sur *pour accéder à l'écran Base de données d'échantillons patient.*

Figure 5-12 Ecran Base de données d'échantillons patient

5.3.1 Recherche des données d'échantillons patient

- 1. Dans l'écran Base de données d'échantillons patient, appuyez sur Rechercher.
- 2. Entrez les conditions de recherche, puis appuyez sur **OK**.

	Recherche échant. patient	
	ID patient ID opérat. Hre début 2013 Annéell Lun 12 Jour Heure fin 2013 Annéell Lun 12 Jour	
	V OK X Annul.	
Ċ	Util. rest. pack ét.:100 , jrs:30 🥌 🛱 2013-11-12 15: 38 🚱	

Figure 5-13 Saisie des conditions de recherche

3. Le système lance automatiquement la recherche et affiche les résultats.

Figure 5-14 Résultats de la recherche

4. Appuyez sur Retour pour retourner à l'écran Base de données d'échantillons patient.

5.3.2 Affichage des détails relatifs aux données d'échantillon patient

- 1. Appuyez sur les données d'échantillon patient que vous souhaitez afficher.
- 2. Appuyez sur Détails. Le système affiche les détails des paramètres mesurés par défaut.

	Dé	étails éch	ant. patien	t	
Mesuré	Calculé	Infos pat			
Paramètre	Résultat	Unité	Plage référence	Calibrer	
рН			[6.500-8.000]	Echec 🔶	
pO2	212 ***	mmHg	[10-700]	ок	
pCO2	< 10.0	mmHg	[10.0-150.0]	ок	
Na+	188 ***	mmol/L	[100-180]	ок	
K+	> 9.0	mmol/L	[2.0-9.0]	ок	
Ca++	0.41	mmol/L	[0.25-2.50]	ок	
CI-	> 150	mmol/L	[65-140]	ок	
Hct	???	%	[10-75]	ок 🖵	• Retour
Util. rest	:. pack ét.:100 ,	jrs:30	-	 2013-11-12	16: 20 🕐

Figure 5-15 Détails des paramètres mesurés

3. Appuyez sur **Calculé** pour afficher les détails des paramètres calculés.

	Déta	ails échant. pati	ent	
Mesu	iré Calculé	Infos pat.		
P	Paramètre	Résultat	Unité	
	tHb(est)	15.6	g/dL	
	cH+	39.8	nmol/L	
,	HCO3-act	21.8	mmol/L	
	HCO3-std	22.5	mmol/L	
	BE(ecf)	-3.0	mmol/L	
				Retour
U	Util. rest. pack ét.:100 , jrs:30		2013-11-	12 13: 26 🕘

Figure 5-16 Détails des paramètres calculés

	Dé	tails échan	ıt. patient		
Mesuré	Calculé	Infos pat.			
Elém.		Résultat	Unité	i i	
Températu	re	38.0	°C		
FIO2		0.45			
					• Retour
Util. rest. p	oack ét.:100 , jrs:30)	🍋 🛱	2013-11-12	13: 26 📀

4. Appuyez sur Info Patient pour afficher les détails des informations patient.

Figure 5-17 Détails des informations patient

5. Appuyez sur **Retour** pour retourner à l'écran Base de données d'échantillons patient.

5.3.3 Modification des données d'informations patient

- 1. Sélectionnez les données d'échantillons patient souhaitées, puis appuyez sur Modifier.
- 2. Modifiez les données d'informations patient. L'écran suivant permettant de configurer les informations patient par défaut s'affiche :

	Modifier ir	fos patient	
Infos pat.1			
ID patient qqq		ID opérat. 1	
Température 38.0	°C	FIO2 0.45	
		V OK X Annu	ul.
Util. rest. pack é	t.:100 , jrs:30	吨 븢 2013-11-12 13: 26	0

Figure 5-18 Modification des données patient

REMARQUE:

L'écran qui s'affiche dépend de l'option que vous avez sélectionnée à la section 4.3.2

Configuration informations patient.

3. Appuyez sur **OK** pour enregistrer les modifications. Le système retourne alors à l'écran Base de données d'échantillons patient.

5.3.4 Exportation/téléchargement/impression des données d'échantillons patient

- 1. Ouvrez la base de données d'échantillons patient.
- 2. Sélectionnez les données d'échantillons patient souhaitées.

Pour	Procédez de la façon suivante
Exporter	Insérez un disque amovible dans l'analyseur, puis appuyez sur Exporter.
Télécharger	Appuyez sur Télécharger .
Imprimer	Appuyez sur Imprimer.

REMARQUE :

Si aucune donnée d'échantillon patient n'est sélectionnée avant d'appuyer sur **Exporter/Télécharger/Imprimer**, toutes les données enregistrées dans la base de données d'échantillons patient sont exportées/téléchargées/imprimées.

Chapitre 6 Tests de contrôle qualité (CQ)

Les tests de contrôle qualité (CQ) contribuent à assurer le bon fonctionnement du système et la fiabilité des résultats de test. Les règles concernant la mesure des échantillons CQ relèvent de la responsabilité de votre établissement. Il est recommandé d'effectuer les tests de CQ dans les cas suivants :

- Vous utilisez le système pour la première fois.
- Vous souhaitez vérifier les performances des nouvelles cartouches de test reçues.
- Vous souhaitez vérifier les conditions de stockage des cartouches de test.
- Vous souhaitez vérifier les performances du système.
- Vous doutez des résultats du test.

Figure 6-1 Ecran de contrôle de qualité

6.1 Test de contrôle

Les tests de contrôle sont destinés à vérifier la fiabilité des performances du système. Pour vérifier les performances de chaque lot de nouvelles cartouches de test reçues, analysez au moins deux niveaux de contrôle en double à l'aide d'un analyseur homologué.

6.1.1 Contrôles

Les contrôles sont conçus pour surveiller les performances de la cartouche de test en plusieurs points de la plage clinique. Les contrôles utilisés sont les contrôles de gaz du sang•électrolytes• métabolites•azote uréique sanguin RNA Medical[®] QC823 et les contrôles d'hématocrite RNA Medical[®] QC900. Les concentrations d'ingrédients réactifs à différents niveaux de contrôle sont connues. Les contrôles ne contiennent aucun matériel humain ou biologique. Les plages acceptables des contrôles spécifiques à l'analyseur de gazométrie et de biochimie sanguine i15 sont programmées dans le code-barres figurant sur le manuel d'utilisation des contrôles fournis par EDAN.

Conditionnement

- Les contrôles de gaz du sang•électrolytes•métabolites•azote uréique sanguin RNA Medical[®] QC823 sont contenus dans des ampoules en verre de 2,5 mL et les contrôles d'hématocrite RNA Medical[®] QC900 sont conditionnés dans des ampoules en verre de 1,7 mL.
- Le kit de contrôles contient des informations, telles que le nom du contrôle, son niveau, le numéro du lot, la date de péremption, etc.

Stockage

Stockez les contrôles conformément aux instructions du manuel d'utilisation correspondant.

Avant utilisation

Les contrôles doivent être stabilisés à température ambiante avant utilisation. Si les niveaux d'oxygène doivent être mesurés, l'ampoule doit reposer à température ambiante pendant au moins 4 heures. Sinon, elle doit reposer à température ambiante pendant 30 minutes.

Immédiatement avant utilisation, mélangez bien les contrôles en agitant délicatement l'ampoule, et tenez toujours une ampoule par le haut et le bas avec l'index et le pouce afin de limiter les risques d'augmentation de température des contrôles. Tapotez doucement le haut de l'ampoule avec l'ongle pour éliminer toute solution.

- ✓ Stockez et utilisez les contrôles conformément aux instructions du manuel d'utilisation et avant la date de péremption indiquée sur l'emballage.
- ✓ Seuls les contrôles fournis par EDAN ou ses distributeurs agréés doivent être utilisés.
- ✓ Evitez toute contamination des contrôles.
- ✓ Pour les cartouches de test munies de capteurs de pH, pCO₂, pO₂ et Ca⁺⁺, une ampoule et une seringue neuves ou un tube capillaire neuf doivent être utilisés pour chaque test. Pour les cartouches de test dépourvues de capteurs de pH, pCO₂, pO₂

et Ca⁺⁺, la solution restante peut toujours être utilisée si l'ampoule est ouverte dans un délai de 10 minutes.

✓ Les résultats du test doivent être compris dans les limites acceptables programmées dans le code-barres figurant sur le manuel d'utilisation des contrôles fournis par EDAN.

6.1.2 Procédures de test de contrôle

Pour effectuer un test de contrôle, procédez comme suit :

- Examinez l'étiquette de contrôles sur l'emballage pour vous assurer que ces derniers ne sont pas périmés.
- 2. Retirez une ampoule de la boîte de contrôles et stabilisez-la à température ambiante.

Si les niveaux d'oxygène doivent être mesurés, l'ampoule doit reposer à température ambiante pendant au moins 4 heures. Sinon, elle doit reposer à température ambiante pendant 30 minutes.

- Appuyez sur la touche Marche/Arrêt située sur le côté gauche de l'analyseur pour mettre ce dernier sous tension.
- 4. Entrez le nom d'utilisateur et mot de passe manuellement, puis appuyez sur

Entrez le nom d'utilisateur et le mot de passe manuellement, appuyez sur puis numérisez le code-barres du nom d'utilisateur.

	Connexion ut.	
Nom d'ut.		
MdP		
		➡ Conn.
Util. rest. pack ét.:100	, jrs:30 💶 🏺	2013-11-12 16: 20 🕐

Figure 6-2 Saisie du nom d'utilisateur et du mot de passe

- 5. Dans l'écran principal, appuyez sur utility pour accéder à l'écran Contrôle qualité.
- 6. Sélectionnez le type de contrôle souhaité.

Appuyez sur un pour effectuer un test de contrôle des gaz et de la biochimie du sang.

pour effectuer un test de contrôle de l'Hct.

7. Appuyez sur **Numériser le code-barres**, puis numérisez le code-barres sur une nouvelle pochette de cartouche.

Si le code-barres est correctement numérisé, le système émet un signal sonore et le scanner est automatiquement éteint. Si les données numérisées sont valides, le système affiche l'écran de la procédure suivante. Si les données numérisées ne sont pas valides, un message s'affiche pour vous avertir.

Figure 6-3 Numérisation du code-barres

8. Ouvrez la pochette en aluminium et retirez-en la cartouche.

- ✓ Evitez de déchirer le code-barres de la pochette en aluminium.
- Pour insérer un échantillon à l'aide d'un tube capillaire ou d'une ampoule, insérez un adaptateur de capillaire/d'ampoule dans l'orifice de remplissage une fois la cartouche retirée.

 Lors de l'insertion d'un adaptateur d'ampoule dans l'orifice de remplissage d'une cartouche de test, assurez-vous que la partie saillante de l'adaptateur est située dans la partie supérieure, comme indiqué dans l'illustration ci-dessous :

9. Appuyez sur **Numériser le code-barres**, puis numérisez le code-barres figurant sur le manuel d'utilisation des contrôles.

Si le code-barres est correctement numérisé, le système émet un signal sonore et le scanner est automatiquement éteint. Si les données numérisées sont valides, le système affiche l'écran de la procédure suivante. Si les données numérisées ne sont pas valides, un message s'affiche pour vous avertir.

Figure 6-4 Numérisation du code-barres

REMARQUE :

Conservez le manuel d'utilisation des contrôles en vue d'une utilisation ultérieure du test de contrôle.

10. Mélangez bien les contrôles en agitant délicatement l'ampoule, puis tapotez délicatement le haut de l'ampoule avec l'ongle pour éliminer toute solution.

Figure 6-5 Mélange des contrôles et insertion de la cartouche

REMARQUE:

Evitez de chauffer l'ampoule avec les mains lors de son agitation.

 Ouvrez l'ampoule en cassant la pointe et transférez immédiatement la solution de contrôle en prélevant lentement une quantité appropriée de solution dans la partie inférieure de l'ampoule à l'aide d'une seringue ou d'un tube capillaire.

REMARQUE:

- ✓ Si vous utilisez une ampoule pour introduire l'échantillon, il est inutile de transférer la solution de contrôle. Insérez l'ampoule dans l'adaptateur après l'avoir ouverte et passez directement à l'étape 13.
- Prenez des mesures de précaution adéquates pour ouvrir l'ampoule, en utilisant, par exemple, des gants, un chiffon, etc.
- 12. Insérez la seringue ou le tube capillaire dans l'orifice de remplissage de la cartouche.

- ✓ Si vous utilisez une seringue, jetez d'abord les 2 premières gouttes de solution, puis retirez-en l'aiguille avant de l'insérer dans l'orifice de remplissage.
- ✓ Si vous utilisez un tube capillaire, insérez-le directement dans l'adaptateur jusqu'à ce que le tube atteigne l'interface reliant l'adaptateur à la cartouche.

- ✓ Pour garantir l'exactitude des résultats de test, assurez-vous que l'échantillon est exempt de bulles. Si des bulles persistent, utilisez une ampoule et une seringue neuves ou un tube capillaire neuf pour prélever de nouveaux échantillons.
- 13. Insérez délicatement la cartouche dans le port correspondant, puis appuyez soigneusement dessus pour vous assurer qu'elle est bien en place.

Si la cartouche est valide, le témoin du port de la cartouche s'allume en vert et le système aspire automatiquement l'étalon. Dans le cas contraire, le témoin s'allume en rouge, la cartouche est éjectée et un message s'affiche pour vous avertir.

- ✓ La cartouche ne peut être retirée de l'analyseur qu'une fois la mesure terminée.
- ✓ N'injectez jamais l'échantillon. Il sera aspiré automatiquement.
- 14. Le système aspire automatiquement l'étalon.

Figure 6-6 Aspiration de l'étalon...

15. Le système effectue automatiquement l'étalonnage.

	Etalonnage	•			
	Patientez		05s		
ር	Ne pas retirer la cartouche	• •	2013-11-12	16: 20	0

Figure 6-7 Etalonnage en cours

16. Le système aspire automatiquement les échantillons une fois l'étalonnage terminé.

	Echantillonnage	
Ċ	Util. rest. pack ét.:100 , jrs:30 💼 堓 2013-11-12 15: 37	0

17. Le système analyse automatiquement l'échantillon à la fin de l'échantillonnage.

	Mesure			
	Patientez		20s	
Ċ	Ne pas retirer la cartouche	5	2013-11-12 16:	20 🕐

Figure 6-9 Mesure en cours

Paramètre	Résultat	Unité	Plage	Etat du CQ
рН	7.361		[7.100-7.700]	Sous contrôle
pO2	90	mmHg	[88-95]	Sous contrôle
pCO2	38.3	mmHg	[37.0-41.0]	Sous contrôle
Na+	141	mmol/L	[138-145]	Sous contrôle
K+	3.8	mmol/L	[3.5-4.2]	Sous contrôle
Ca++	1.10	mmol/L	[1.00-1.20]	Sous contrôle
				Acc 🖨 Impr

18. Le système affiche automatiquement les résultats à la fin du test.

Figure 6-10 Résultats du test de contrôle

19. Examinez les résultats.

- Le système indique si les résultats sont compris dans les limites acceptables, dans
 Sous contrôle/Hors de contrôle.
- Si l'étalonnage d'un paramètre échoue, le système ne pourra pas déterminer si ce dernier est sous contrôle et affiche le message Echec de l'étalonnage pour vous avertir.
- ✓ Le système n'affiche pas le résultat d'un paramètre qui échoue au test de contrôle lors de l'analyse de l'échantillon patient si la fonction de verrouillage CQ est activée dans Configuration. Pour afficher le résultat du paramètre, répétez le test de contrôle jusqu'à ce que le paramètre soit admis.
- ✓ Si les résultats se situent en dehors des plages acceptables, vérifiez d'abord les éléments suivants, puis effectuez un autre test.
 - Pour vérifier que les procédures de test sont correctes, consultez le manuel d'utilisation.
 - Les cartouches et les contrôles de test sont correctement stockés et ne sont pas périmés.
 - Le système réussit le test sur simulateur électronique.

Si tous les éléments ci-dessus sont vérifiés, mais que les résultats se trouvent toujours en dehors des plages acceptables, cessez d'utiliser le système et contactez EDAN ou ses distributeurs agréés pour obtenir de l'aide.

- 20. Retirez la cartouche de test du système.
- 21. Appuyez sur Imprimer pour imprimer les résultats.
- 22. Appuyez sur Accueil pour retourner à l'écran principal.

Le contenu d'un rapport de test de contrôle varie selon le type de contrôle et de cartouche de test que vous avez utilisés, les options sélectionnées à la section 4.2.1 Configuration imprimante, et les erreurs et alarmes détectées par le système pendant l'analyse. Voici un exemple de rapport de test de contrôle :

Rapport de test de contrôle

EDAN i15

ID système Type de rapport Heure d'impressio Heure du test ID opérateur Numéro du lot	201303200023 Test de contrôle on 2012-03-20 15:20:00 2012-03-20 15:00:00 55555 21209
Résultats de l'ét	talonnage
рН ОК	<u> </u>
pCO_2 OK	
pO_2 OK	
Na ⁺ OK	
K ⁺ OK	
Ca ⁺⁺ OK	
C1 ⁻ OK	
Résultats du cont	trôle
pH 7,161	
pCO_2 68, 2 mmH	g
pO_2 66, 0 mmH	lg
Na ⁺ 114,8 mmo	1/L
K ⁺ 6,90 mmo	ol/L
Ca ⁺⁺ 1,52 mmo	01/L
C1 ⁻ 77 mmo	D1/L

рН	Sous contrôle	
pCO_2	Sous contrôle	
$p0_2$	Sous contrôle	
Na^{+}	Sous contrôle	
K^+	Sous contrôle	
Ca++	Sous contrôle	
$C1^-$	Sous contrôle	
Plage	es de contrôle	
рН	[7,111 - 7,211]	
pCO_2	[60, 2 - 76, 2]	mmHg
$p0_2$	[51,0 - 81,0]	mmHg
Na^{+}	[109,8 - 119,8]	mmo1/L
K^+	[1, 44 - 2, 44]	mmo1/L
Ca++	[1,32 - 1,72]	mmo1/L
$C1^-$	[72 - 82]	mmo1/L

6.1.3 Correction de la température pour pO_2 et pCO_2

Les résultats pO_2 et pCO_2 sont inversement affectés par la température ambiante. Vous pouvez ajuster les plages acceptables pour tenir compte des effets de la température ambiante à l'aide du tableau ci-dessous. Par exemple, si votre laboratoire effectue généralement les tests à une température de 24 - 26 °C avec la plage pCO_2 pour le niveau 1 de 60,2 - 76,2 mmHg, la plage peut être ajustée en retirant 0,74 mmHg aux limites supérieure et inférieure :

Plage ajustée =	= (60,2 -	76.2) m	nmHg –	0.74 =	59,46 -	75,46	mmHg
1 1000 00000	(**,=	, ,,_, ,, ,,		•, • •		, . ,	

mmHg	Niveau	10 - 12 °C	13 - 15 °C	15 - 17 °C	18 - 20 °C	21 - 23 °C	24 - 26 °C	27 - 28 °C	29 - 31 °C
pO_2	1	3,37	2,53	1,69	0,84	0,00	-0,84	-1,69	-2,53
pCO_2	1	2,94	2,21	1,47	0,74	0,00	-0,74	-1,47	-2,21
pO_2	2	6,92	5,19	3,46	1,73	0,00	-1,73	-3,46	-5,19
pCO_2	2	1,47	1,10	0,74	0,37	0,00	-0,37	-0,73	-1,10
pO_2	3	10,48	7,86	5,24	2,62	0,00	-2,62	-5,24	-7,86

kPa	Niveau	10 - 12 °C	13 - 15 °C	15 - 17 °C	18 - 20 °C	21 - 23 °C	24 - 26 °C	27 - 28 °C	29 - 31 °C
pO_2	1	0,45	0,34	0,22	0,11	0,00	-0,11	-0,22	-0,34
pCO ₂	1	0,39	0,29	0,20	0,10	0,00	-0,10	-0,20	-0,29
pO_2	2	0,92	0,69	0,46	0,23	0,00	-0,23	-0,46	-0,69
pCO_2	2	0,20	0,15	0,10	0,05	0,00	-0,05	-0,10	-0,15
pO_2	3	1,40	1,05	0,70	0,35	0,00	-0,35	-0,70	-1,05

6.1.4 Base de données de contrôles

Par défaut, la base de données de contrôles affiche les données de test de contrôle du dernier mois et peut contenir jusqu'à 1 000 entrées. Le système affiche 50 entrées de données sur chaque page. Appuyez sur **Préc.** ou sur **Suivant** pour faire défiler les écrans des entrées de données affichées. Lorsque 80 % de l'espace est occupé, le système vous invite à exporter les données stockées vers un disque amovible (par exemple, une clé USB). Si les données ne sont pas exportées, le système vous invite systématiquement à exporter les données stockées. Si les données ne sont toujours pas exportées, le système supprime automatiquement les anciennes données pour en stocker de nouvelles. Les opérations suivantes peuvent être effectuées dans la base de données (SGD) ou le SIH/LIS via une connexion Wi-Fi ou le réseau, exportation des données de test de contrôle vers un disque amovible (par exemple, une clé USB), affichage des détails relatifs aux données de test de contrôle vers un disque amovible (par exemple, une clé USB), affichage des détails relatifs aux données de test de contrôle vers un disque amovible (par exemple, une clé USB), affichage des détails relatifs aux données de test de contrôle vers le système de gestion de données (SGD) ou le SIH/LIS via une connexion Wi-Fi ou le réseau, exportation des données de test de contrôle vers un disque amovible (par exemple, une clé USB), affichage des détails relatifs aux données de test de contrôle vers un disque amovible (par exemple, une clé USB), affichage des détails relatifs aux données de test de contrôle vers un disque amovible (par exemple, une clé USB), affichage des détails relatifs aux données de test de contrôle vers un disque amovible (par exemple, une clé USB), affichage des détails relatifs aux données de test de contrôle, etc.

Dans l'écran Base de données, appuyez sur is pour accéder à l'écran Base de données de contrôles.

Figure 6-11 Ecran Base de données de contrôles

6.1.4.1 Recherche de données de test de contrôle

- 1. Dans l'écran Base de données de contrôles, appuyez sur **Rechercher**.
- 2. Entrez les conditions de recherche, puis appuyez sur OK.

_		Recherche commande	
	ID opérat.		
	Niveau CQ		
	Hre début	2013 🖨 Annéel1 🖨 Lun 12 🖨 Jour	
	Heure fin	2013 🗧 Annéel1 🗧 Lun 12 🗧 Jour	
		V OK X Anr	ıul.
Ċ	Util. rest. pack ét.:10	00 , jrs:30 🦳 🐫 2013-11-12 15:	38 🕐

Figure 6-12 Saisie des conditions de recherche

3. Le système lance automatiquement la recherche et affiche les résultats.

Figure 6-13 Résultats de la recherche

4. Appuyez sur **Retour** pour retourner à l'écran Base de données de contrôles.

6.1.4.2 Affichage des détails relatifs aux données de test de contrôle

- 1. Cliquez sur les données de test de contrôle que vous souhaitez afficher.
- 2. Appuyez sur Détails. Le système affiche les détails suivants :

Détails commande					
Paramètre	Etat du CQ	Résultat	Unité	Plage référence)
рН	Sous contrôle	7.361		[7.300-7.400]	
pO2	Sous contrôle	100	mmHg	[95-105]	
pCO2	Sous contrôle	40.0	mmHg	[35.0-45.0]	
Na+	Sous contrôle	142	mmol/L	[138-146]	
K+	Sous contrôle	4.2	mmol/L	[4.0-4.5]	
Ca++	Sous contrôle	1.20	mmol/L	[1.10-1.20]	
CI-	Sous contrôle	100	mmol/L	[98-106]	
Glu	Sous contrôle	5.1	mmol/L	[4.9-5.8]	• Retour
Util.	rest. pack ét.:100 , jrs	:30		🍋 🛱 2013-11-1	2 13: 44 🕐

Figure 6-14 Détails des résultats de test de contrôle

- 3. Examinez les détails.
- 4. Appuyez sur **Retour** pour retourner à l'écran Base de données de contrôles.
- 6.1.4.3 Exportation/Téléchargement/Impression des données de test de contrôle
 - 1. Ouvrez la base de données de contrôles.
 - 2. Sélectionnez les données de test de contrôle souhaitées.

Pour	Procédez de la façon suivante
Exporter	Insérez un disque amovible dans l'analyseur, puis appuyez sur Exporter.
Télécharger	Appuyez sur Télécharger .
Imprimer	Appuyez sur Imprimer .

REMARQUE :

Si aucune donnée de test de contrôle n'est sélectionnée avant d'appuyer sur **Exporter/Télécharger/Imprimer**, toutes les données stockées dans la base de données de contrôles sont exportées/téléchargées/imprimées.

6.2 Test d'aptitude

Les tests d'aptitude sont également appelés tests de contrôle qualité externes. Dans ce type de test, l'analyse des échantillons inconnus provenant de fournisseurs de contrôles de qualité externes peut fournir une indication de la précision du système.

6.2.1 Procédures du test d'aptitude

Pour effectuer un test d'aptitude, procédez comme suit :

- 1. Examinez l'étiquette des échantillons de test d'aptitude sur l'emballage pour vous assurer que ces derniers ne sont pas périmés.
- 2. Retirez une ampoule de la boîte et stabilisez-la à température ambiante.

Si les niveaux d'oxygène doivent être mesurés, l'ampoule doit reposer à température ambiante pendant au moins 4 heures. Sinon, elle doit reposer à température ambiante pendant 30 minutes.

- Appuyez sur la touche Marche/Arrêt située sur le côté gauche de l'analyseur pour mettre ce dernier sous tension.
- 4. Entrez le nom d'utilisateur et mot de passe manuellement, puis appuyez sur 🖃

→

Entrez le nom d'utilisateur et le mot de passe manuellement, appuyez sur Entrez le code-barres du nom d'utilisateur.

	Connexion ut.	
Nom d'ut.		
MdP]
		➡ Conn.
Util. rest. pack ét.:100	, jrs:30 📮 🏺	2013-11-12 16: 20 📀

Figure 6-15 Saisie du nom d'utilisateur et du mot de passe

5. Dans l'écran principal, appuyez sur vous pour accéder à l'écran Contrôle de qualité, puis

6. Appuyez sur **Numériser le code-barres**, puis numérisez le code-barres sur une nouvelle pochette de cartouche.

Si le code-barres est correctement numérisé, le système émet un signal sonore et le scanner est automatiquement éteint. Si les données numérisées sont valides, le système affiche l'écran de la procédure suivante. Si les données numérisées ne sont pas valides, un message s'affiche pour vous avertir.

Figure 6-16 Numérisation du code-barres

7. Ouvrez la pochette en aluminium et retirez-en la cartouche.

- ✓ Evitez de déchirer le code-barres de la pochette en aluminium.
- Pour introduire un échantillon à l'aide d'un tube capillaire ou d'une ampoule, insérez un adaptateur de capillaire/d'ampoule dans l'orifice de remplissage une fois la cartouche retirée.
- Lors de l'insertion d'un adaptateur d'ampoule dans l'orifice de remplissage d'une cartouche de test, assurez-vous que la partie saillante de l'adaptateur est située dans la partie supérieure, comme indiqué dans l'illustration ci-dessous :

8. Entrez le numéro de lot de l'échantillon de test d'aptitude, puis appuyez sur Entrée.

Pour entrer les informations sur le numéro de lot à l'aide du scanner de codes-barres, appuyez

d'abord sur , puis numérisez le code-barres.

Entrer les infos de o	compétence
N° de lot	
Annul.	Entry
Util. rest. pack ét.:100 , jrs:30	💼 🛱 2013-11-12 15: 38 🕜

Figure 6-17 Saisie des informations

REMARQUE:

Seules les informations de numéros de lot comportant entre 1 et 16 chiffres sont acceptées.

9. Mélangez bien l'échantillon de test d'aptitude en agitant délicatement l'ampoule, puis tapotez délicatement le haut de l'ampoule avec l'ongle pour éliminer toute solution.

Figure 6-18 Mélange de l'échantillon de test d'aptitude et insertion de la cartouche

REMARQUE :

Evitez de chauffer l'ampoule avec les mains lors de son agitation.

10. Ouvrez l'ampoule en cassant la pointe et transférez immédiatement la solution de test d'aptitude en prélevant lentement une quantité suffisante de solution dans la partie inférieure de l'ampoule à l'aide d'une seringue ou d'un tube capillaire.

REMARQUE:

- Si vous utilisez une ampoule, il est inutile de transférer la solution de test d'aptitude.
 Insérez l'ampoule dans l'adaptateur après l'avoir ouverte et passez directement à l'étape 12.
- ✓ Prenez des mesures de précaution adéquates pour ouvrir l'ampoule, en utilisant, par exemple, des gants, un chiffon, etc.
- 11. Insérez la seringue ou le tube capillaire dans l'orifice de remplissage de la cartouche.

- ✓ Si vous utilisez une seringue, jetez d'abord les 2 premières gouttes de solution, puis retirez-en l'aiguille avant de l'insérer dans l'orifice de remplissage.
- ✓ Si vous utilisez un tube capillaire, insérez-le directement dans l'adaptateur jusqu'à ce que le tube atteigne l'interface reliant l'adaptateur à la cartouche.

- ✓ Pour garantir l'exactitude des résultats de test, assurez-vous que l'échantillon est exempt de bulles. Si des bulles persistent, utilisez une ampoule et une seringue neuves ou un tube capillaire neuf pour prélever de nouveaux échantillons.
- 12. Insérez délicatement la cartouche dans le port correspondant, puis appuyez soigneusement dessus pour vous assurer qu'elle est bien en place.

Si la cartouche est valide, le témoin du port de la cartouche s'allume en vert et le système aspire automatiquement l'étalon. Dans le cas contraire, le témoin s'allume en rouge, la cartouche est éjectée et un message s'affiche pour vous avertir.

- ✓ La cartouche ne peut être retirée de l'analyseur qu'une fois la mesure terminée.
- ✓ N'injectez jamais l'échantillon. Il sera aspiré automatiquement.
- 13. Le système aspire automatiquement l'étalon.

Figure 6-19 Aspiration de l'étalon...
14. Le système effectue automatiquement l'étalonnage.

	Etalonnage				
	Patientez		05s		
Ċ	Ne pas retirer la cartouche	•	2013-11-12	16: 20	0

Figure 6-20 Etalonnage en cours

15. Le système aspire automatiquement les échantillons une fois l'étalonnage terminé.

Echantillonnage	
Util. rest. pack ét.:100 , jrs:30 💶 🛱 💈	2013-11-12 15: 37 🕘

16. Le système analyse automatiquement l'échantillon à la fin de l'échantillonnage.

	Mesure				
	Patientez		20s		
Ċ	Ne pas retirer la cartouche	• į	2013-11-12	16: 20	3

Figure 6-22 Mesure en cours

Paramètre	Résultat	Unité	Rés. étalonnage
рН	7.361		ОК
pO2	90	mmHg	ОК
pCO2	38.3	mmHg	ОК
Na+	141	mmol/L	ОК
K+	3.8	mmol/L	ОК
Ca++	1.10	mmol/L	ОК
			Ass 📑 Im

17. Le système affiche automatiquement les résultats à la fin du test.

Figure 6-23 Résultats du test d'aptitude

- 18. Examinez les résultats.
- 19. Retirez la cartouche de test du système.
- 20. Appuyez sur Imprimer pour imprimer les résultats.
- 21. Appuyez sur Accueil pour retourner à l'écran principal.

Voici un exemple de rapport de test d'aptitude :

Rapport de test d'aptitude

EDAN i1	5
ID système	201303200023
Type de rapport	Test d'aptitude
Heure d'impression	2012-03-20 15:20:00
Heure du test	2012-03-20 15:10:00
ID opérateur	55555
Numéro du lot	21209
pH OK pCO_2 OK pO_2 OK	tomage
Résultats du test d pH 7,4	l'aptitude
pCO_2 40 mmHg	
pO_2 90 mmHg	

6.2.2 Base de données de tests d'aptitude

Par défaut, la base de données de tests d'aptitude affiche toutes les données de tests d'aptitude et peut stocker jusqu'à 1 000 entrées. Le système affiche 50 entrées de données sur chaque page. Appuyez sur **Préc.** ou sur **Suivant** pour faire défiler les écrans des entrées de données affichées. Les opérations suivantes peuvent être effectuées dans la base de données de tests d'aptitude : transmission des données de tests d'aptitude vers le système de gestion de données (SGD) ou le SIH/LIS via une connexion Wi-Fi ou le réseau, exportation des données de tests d'aptitude vers un disque amovible (par exemple, une clé USB), affichage des détails relatifs aux données de tests d'aptitude, recherche et impression des données de tests d'aptitude, etc.

Dans l'écran Base de données, appuyez sur gour accéder à l'écran Base de données de tests d'aptitude.

BdD de compétences						
N°	Date et heure	ID opérat.	Nº de lot			
1 Pge: 1/1	2013-11-12 14:37:49	1	21209	Impr. Téléch. Q Téléch. Recher. Export. Détails Préc. Suiv. Retour		
ப	Util. rest. pack ét.:100 , jrs	:30	든 🖊 20	013-11-12 15: 38 🥘		

Figure 6-24 Ecran Base de données de tests d'aptitude

6.2.2.1 Recherche de données de tests aptitude

- 1. Dans l'écran Base de données de tests d'aptitude, appuyez sur **Rechercher**.
- 2. Entrez les conditions de recherche, puis appuyez sur OK.

		Recherche com	pétence
	ID opérat. Hre début Heure fin	2013 🔶 Annéel1 2013 🔶 Annéel1	Lun 12 Jour
			V OK X Annul.
Ð	Util. rest. pack ét.:10	0 , jrs:30	💶 🖊 2013-11-12 15: 38 🕘

Figure 6-25 Saisie des conditions de recherche

3. Le système lance automatiquement la recherche et affiche les résultats.

Figure 6-26 Résultats de la recherche

4. Appuyez sur **Retour** pour retourner à l'écran Base de données de tests d'aptitude.

6.2.2.2 Affichage des détails relatifs aux données de tests d'aptitude

- 1. Cliquez sur les données de tests d'aptitude que vous souhaitez afficher.
- 2. Appuyez sur Détails. Le système affiche les détails suivants :

Détails compétence						
Paramètre	Résultat	Unité	Rés. étalonnage			
рН	7.361		ок 🛆			
pO2	210	mmHg	ок			
pCO2	110.3	mmHg	ок			
Na+	100	mmol/L	ок			
K+	3.5	mmol/L	ок			
Ca++	2.10	mmol/L	ок			
Cl-	95	mmol/L	ок			
Glu	5.1	mmol/L	ок 🤝	Retour		
Util. rest. pacl	k ét.:100 , jrs:30		🥶 🛱 2013-11-12	2 13: 44 🕜		

Figure 6-27 Détails des résultats de tests d'aptitude

- 3. Examinez les détails.
- 4. Appuyez sur **Retour** pour retourner à l'écran Base de données de tests d'aptitude.

6.2.2.3 Exportation/téléchargement/impression des données de tests d'aptitude

- 1. Ouvrez la base de données de tests d'aptitude.
- 2. Sélectionnez les données de tests d'aptitude souhaitées.

Pour	Procédez de la façon suivante
Exporter	Insérez un disque amovible dans l'analyseur, puis appuyez sur Exporter.
Télécharger	Appuyez sur Télécharger .
Imprimer	Appuyez sur Imprimer .

REMARQUE:

Si aucune donnée de test d'aptitude n'est sélectionnée avant d'appuyer sur **Exporter/Télécharger/Imprimer**, toutes les données stockées dans la base de données de tests d'aptitude sont exportées/téléchargées/imprimées.

6.3 Test de vérification d'étalonnage

Les tests de vérification d'étalonnage sont destinés à vérifier l'exactitude des résultats sur toute la plage de mesure d'un test.

6.3.1 Contrôles de vérification d'étalonnage

Les contrôles de vérification d'étalonnage sont destinés à confirmer la linéarité de l'analyseur de gazométrie et de biochimie sanguine i15. Les contrôles de vérification d'étalonnage RNA Medical[®] CVC123 et les contrôles de vérification d'étalonnage de l'hématocrite RNA Medical[®] CVC9005 sont utilisés. Les concentrations d'agents réactifs à différents niveaux de contrôle de vérification d'étalonnage sont connues. Les contrôles de vérification d'étalonnage ne contiennent pas de matériel humain ou biologique. Les plages acceptables des contrôles de vérification d'étalonnage spécifiques à l'analyseur de gazométrie et de biochimie sanguine i15 sont programmées dans le code-barres figurant sur le manuel d'utilisation des contrôles de vérification d'étalonnage fourni par EDAN.

Conditionnement

- Les contrôles de vérification d'étalonnage RNA Medical[®] CVC123 sont contenus dans des ampoules en verre de 2,5 mL et les contrôles de vérification d'étalonnage de l'hématocrite RNA Medical[®] CVC9005 sont conditionnés dans des ampoules en verre de 1,7 mL.
- 2. Le kit de contrôles de vérification d'étalonnage contient des informations, telles que le nom du contrôle, son niveau, le numéro du lot, la date de péremption, etc.

Stockage

Stockez les contrôles de vérification d'étalonnage conformément aux instructions du manuel d'utilisation correspondant.

Avant utilisation

Les contrôles de vérification d'étalonnage doivent être stabilisés à température ambiante avant utilisation. Si les niveaux d'oxygène doivent être mesurés, l'ampoule doit reposer à température ambiante pendant au moins 4 heures. Sinon, elle doit reposer à température ambiante pendant 30 minutes.

Immédiatement avant utilisation, mélangez bien les contrôles de vérification d'étalonnage en agitant délicatement l'ampoule, et tenez toujours l'ampoule par le haut et le bas avec l'index et le pouce afin de limiter les risques d'augmentation de température des contrôles. Tapotez doucement le haut de l'ampoule avec l'ongle pour éliminer toute solution.

REMARQUE :

- Stockez et utilisez les contrôles de vérification d'étalonnage conformément aux instructions du manuel d'utilisation et avant la date de péremption indiquée sur l'emballage.
- ✓ Seuls les contrôles de vérification d'étalonnage fournis par EDAN ou ses distributeurs agréés doivent être utilisés.
- ✓ Evitez toute contamination des contrôles de vérification d'étalonnage.
- ✓ Pour les cartouches de test munies de capteurs de pH, pCO₂, pO₂ et Ca⁺⁺, une ampoule et une seringue neuves ou un tube capillaire neuf doivent être utilisés pour chaque test. Pour les cartouches de test dépourvues de capteurs de pH, pCO₂, pO₂ et Ca⁺⁺, la solution restante peut toujours être utilisée si l'ampoule est ouverte dans un délai de 10 minutes.
- Les résultats du test doivent être compris dans les limites acceptables programmées dans le code-barres indiqué sur le manuel d'utilisation des contrôles de vérification d'étalonnage fourni par EDAN.

6.3.2 Procédures de test de vérification de l'étalonnage

Pour effectuer un test de vérification de l'étalonnage, procédez comme suit :

- 1. Examinez l'étiquette des contrôles de vérification d'étalonnage apposée sur l'emballage pour vous assurer que ces derniers ne sont pas périmés.
- Retirez une ampoule de la boîte de contrôles de vérification d'étalonnage et stabilisez-la à température ambiante.

Si les niveaux d'oxygène doivent être mesurés, l'ampoule doit reposer à température ambiante pendant au moins 4 heures. Sinon, elle doit reposer à température ambiante pendant 30 minutes.

- Appuyez sur la touche Marche/Arrêt située sur le côté gauche de l'analyseur pour mettre ce dernier sous tension.
- 4. Entrez le nom d'utilisateur et mot de passe manuellement, puis appuyez sur

Entrez le nom d'utilisateur et le mot de passe manuellement, appuyez sur

numérisez le code-barres du nom d'utilisateur.

	Connexion ut.	
Nom d'ut.		
MdP		
		→ Conn.
Util. rest. pack ét.:100	, jrs:30 🏾 📮 🏺	2013-11-12 16: 20 🕐

Figure 6-28 Saisie du nom d'utilisateur et du mot de passe

- 5. Dans l'écran principal, appuyez sur pour accéder à l'écran Contrôle qualité.
- 6. Sélectionnez le type de vérification d'étalonnage souhaité.

Appuyez sur *verification d'étalonnage des gaz et de la biochimie du sang.*

Appuyez sur pour effectuer un test de vérification d'étalonnage de l'Hct.

7. Appuyez sur **Numériser le code-barres**, puis numérisez le code-barres sur une nouvelle pochette de cartouche.

Si le code-barres est correctement numérisé, le système émet un signal sonore et le scanner est automatiquement éteint. Si les données numérisées sont valides, le système affiche l'écran de la procédure suivante. Si les données numérisées ne sont pas valides, un message s'affiche pour vous avertir.

Figure 6-29 Numérisation du code-barres

8. Ouvrez la pochette en aluminium et retirez-en la cartouche.

REMARQUE:

- ✓ Evitez de déchirer le code-barres de la pochette en aluminium.
- ✓ pour insérer un échantillon à l'aide d'un tube capillaire ou d'une ampoule, insérez un adaptateur de capillaire/d'ampoule dans l'orifice de remplissage une fois la cartouche retirée.
- Lors de l'insertion d'un adaptateur d'ampoule dans l'orifice de remplissage d'une cartouche de test, assurez-vous que la partie saillante de l'adaptateur est située dans la partie supérieure, comme indiqué dans l'illustration ci-dessous :

- 9. Appuyez sur **Numériser le code-barres**, et numérisez le code-barres figurant sur le manuel d'utilisation des contrôles de vérification d'étalonnage.
 - Si le code-barres est correctement numérisé, le système émet un signal sonore et le scanner

est automatiquement éteint. Si les données numérisées sont valides, le système affiche l'écran de la procédure suivante. Si les données numérisées ne sont pas valides, un message s'affiche pour vous avertir.

Figure 6-30 Numérisation du code-barres

REMARQUE:

Conservez le manuel d'utilisation des contrôles de vérification d'étalonnage en vue d'une utilisation ultérieure du test de vérification d'étalonnage.

10. Mélangez bien les contrôles de vérification d'étalonnage en agitant légèrement l'ampoule, puis tapotez le haut de l'ampoule avec l'ongle pour éliminer toute solution.

Figure 6-31 Mélange des contrôles de vérification d'étalonnage et insertion de la cartouche **REMARQUE :**

Evitez de chauffer l'ampoule avec les mains lors de son agitation.

11. Ouvrez l'ampoule en cassant la pointe et transférez immédiatement la solution de contrôle de vérification d'étalonnage en prélevant lentement une quantité suffisante de solution dans la partie inférieure de l'ampoule à l'aide d'une seringue ou d'un tube capillaire.

REMARQUE:

- Si vous utilisez une ampoule pour introduire l'échantillon, il est inutile de transférer la solution de contrôle de vérification d'étalonnage. Insérez l'ampoule dans l'adaptateur après l'avoir ouverte et passez directement à l'étape 13.
- Prenez des mesures de précaution adéquates pour ouvrir l'ampoule, en utilisant, par exemple, des gants, un chiffon, etc.
- 12. Insérez la seringue ou le tube capillaire dans l'orifice de remplissage de la cartouche.

REMARQUE :

- ✓ Si vous utilisez une seringue, jetez d'abord les 2 premières gouttes de solution, puis retirez-en l'aiguille avant de l'insérer dans l'orifice de remplissage.
- ✓ Si vous utilisez un tube capillaire, insérez-le directement dans l'adaptateur jusqu'à ce que le tube atteigne l'interface reliant l'adaptateur à la cartouche.
- ✓ Pour garantir l'exactitude des résultats de test, assurez-vous que l'échantillon est exempt de bulles. Si des bulles persistent, utilisez une ampoule et une seringue neuves ou un tube capillaire neuf pour prélever de nouveaux échantillons.
- 13. Insérez délicatement la cartouche dans le port correspondant, puis appuyez soigneusement dessus pour vous assurer qu'elle est bien en place.

Si la cartouche est valide, le témoin du port de la cartouche s'allume en vert et le système aspire automatiquement l'étalon. Dans le cas contraire, le témoin s'allume en rouge, la cartouche est éjectée et un message s'affiche pour vous avertir.

REMARQUE:

- ✓ La cartouche ne peut être retirée de l'analyseur qu'une fois la mesure terminée.
- ✓ N'injectez jamais l'échantillon. Il sera aspiré automatiquement.

14. Le système aspire automatiquement l'étalon.

Figure 6-32 Aspiration de l'étalon...

15. Le système effectue automatiquement l'étalonnage.

Etalonnage						
	Patientez		05s			
Ċ	Ne pas retirer la cartouche	🦷 🖗	2013-11-12	16: 20 🥘		

Figure 6-33 Etalonnage en cours

16. Le système aspire automatiquement les échantillons une fois l'étalonnage terminé.

Figure 6-34 Echantillonnage...

17. Le système analyse automatiquement l'échantillon à la fin de l'échantillonnage.

	Mesure				
	Patientez		20s		
Ċ	Ne pas retirer la cartouche	• j	2013-11-12	16: 20	2

Figure 6-35 Mesure en cours

18. Le système affiche automatiquement les résultats à la fin du test.

Paramètre	Résultat	Unité	Plage	Etat du CQ
рН	7.361		[7.100-7.700]	Sous contrôle
pO2	90	mmHg	[88-95]	Sous contrôle
pCO2	38.3	mmHg	[37.0-41.0]	Sous contrôle
Na+	141	mmol/L	[138-145]	Sous contrôle
K+	3.8	mmol/L	[3.5-4.2]	Sous contrôle
Ca++	1.10	mmol/L	[1.00-1.20]	Sous contrôle
				Acc 🗖 Imp

Figure 6-36 Résultats du test de vérification d'étalonnage

19. Examinez les résultats.

REMARQUE:

- Le système indique si les résultats sont compris dans les limites acceptables, dans Sous contrôle/Hors de contrôle.
- ✓ Si l'étalonnage d'un paramètre échoue, le système ne pourra pas déterminer si ce dernier est sous contrôle et affiche le message Echec de l'étalonnage pour vous avertir.
- ✓ Le système ne signale pas le résultat d'un paramètre qui échoue au test de contrôle lors de l'analyse de l'échantillon patient si la fonction de verrouillage CQ est activée

dans Configuration. Pour afficher le résultat du paramètre, répétez le test de contrôle de vérification d'étalonnage jusqu'à ce que le paramètre soit admis.

- ✓ Si les résultats se situent en dehors des plages acceptables, vérifiez d'abord les éléments suivants, puis effectuez un autre test.
 - Pour vérifier que les procédures de test sont correctes, consultez le manuel d'utilisation.
 - Les cartouches et les contrôles de test sont correctement stockés et ne sont pas périmés.
 - Le système réussit le test sur simulateur électronique.

Si tous les éléments ci-dessus sont vérifiés, mais que les résultats se trouvent toujours en dehors des plages acceptables, cessez d'utiliser le système et contactez EDAN ou ses distributeurs agréés pour obtenir de l'aide.

- 20. Retirez la cartouche de test du système.
- 21. Appuyez sur **Imprimer** pour imprimer les résultats.
- 22. Appuyez sur Accueil pour retourner à l'écran principal.

Le contenu d'un rapport de test de contrôle de vérification d'étalonnage varie selon le type de contrôle et de cartouche de test que vous avez utilisés, les options sélectionnées à la section 4.2.1 Configuration imprimante, et les erreurs et alarmes détectées par le système pendant l'analyse. Voici un exemple de rapport de test de contrôle de vérification d'étalonnage :

Rapport de test de vérification d'étalonnage

EDAN i15

ID système	201303200023
Type de rapport	Test de vér. d'ét.
Heure d'impression	2012-03-20 15:20:00
Heure du test	2012-03-20 15:00:00
ID opérateur	55555
Numéro du lot	21209
Résultats de l'étalo	onnage
pH OK	
pCO_2 OK	
pO_2 OK	

Na^{+}	ОК		
\mathbf{K}^{+}	ОК		
Ca ⁺⁺	ОК		
$C1^{-}$	ОК		
Résult	ats de vér. de l'ét.		
рН	7,161		
pCO_2	68,2 mmHg		
$p0_{2}$	66,0 mmHg		
Na^{+}	114,8 mmol/L		
K^{+}	6,90 mmol/L		
Ca ⁺⁺	1,52 mmol/L		
$C1^{-}$	77 mmol/L		
рН	Sous contrôle		
pCO_2	Sous contrôle		
$p0_{2}$	Sous contrôle		
Na^{+}	Sous contrôle		
K^+	Sous contrôle		
Ca	Sous contrôle		
$C1^-$	Sous contrôle		
Plages	s de vér. d'ét.		
рН	[7,111 - 7,211]		
pCO_2	[60,2 - 76,2]	mmHg	
$p0_{2}$	[51,0 - 81,0]	mmHg	
Na^{+}	[109,8 - 119,8]	mmo1/L	
K^{+}	[1, 44 - 2, 44]	mmo1/L	
Ca	[1, 32 - 1, 72]	mmo1/L	
$C1^{-}$	[72 - 82]	mmo1/L	

6.3.3 Base de données de vérification d'étalonnage

Par défaut, la base de données de vérification d'étalonnage affiche les données de test de vérification d'étalonnage du dernier mois et peut contenir jusqu'à 1 000 entrées. Le système affiche 50 entrées de données sur chaque page. Appuyez sur **Préc.** ou sur **Suivant** pour faire défiler les écrans des entrées de données affichées. Lorsque 80 % de l'espace est occupé, le système vous invite à exporter les données stockées vers un disque amovible (par exemple, une clé USB). Si les données ne sont pas exportées, le système vous invite systématiquement à exporter les données est pleine, le système vous invite systématiquement à exporter les données ne sont toujours pas exportées, le système supprime

automatiquement les anciennes données pour en stocker de nouvelles. Les opérations suivantes peuvent être effectuées dans la base de données de vérification d'étalonnage : transmission des données de test de vérification d'étalonnage vers le système de gestion de données (SGD) ou le SIH/LIS via une connexion Wi-Fi ou le réseau, exportation des données de test de vérification d'étalonnage vers un disque amovible (par exemple, une clé USB), affichage des détails relatifs aux données de test de vérification d'étalonnage, recherche et impression des données de test de vérification d'étalonnage, etc.

Dans l'écran Base de données, appuyez sur la touche pour accéder à l'écran Base de données de vérification d'étalonnage.

	BdD de ver. étalons						
ĺ	N°	Date et heure	ID opérat.	Type CQ	Niv.	Nº de lot	
	1	2013-10-14 00:03:19	1	BG	2	21209	Impr. Téléch. Q Recher. Export. Détails Préc. Suiv. Recour
F	Pge: 1/	1 Afficher der. donnée	s mens.				
	Ċ	Aucun pack d'ét. tro	uvé			2 01	3-11-13 13: 26 (

Figure 6-37 Ecran Base de données de vérification d'étalonnage

6.3.3.1 Recherche de données de test de vérification d'étalonnage

- 1. Dans l'écran Base de données de vérification d'étalonnage, appuyez sur **Rechercher**.
- 2. Entrez les conditions de recherche, puis appuyez sur OK.

		Recherche ver. étal.
	ID opérat. Niveau CQ Hre début Heure fin	2013 Année10 Lun 13 Jour 2013 Année11 Lun 13 Jour
Ċ	Aucun pack d'ét. tro	✓ OK X Annul.

Figure 6-38 Saisie des conditions de recherche

3. Le système lance automatiquement la recherche et affiche les résultats.

	Rés. recherche ver. étal.						
N°	Date et heure	ID opérat.	Type CQ	Niv.	Nº de lot		
1 Pae: 1/	2013-10-14 00:03:19	1	BG	2	21209	Impr. Téléch. Q Fécher. Export. Détails Préc. Suiv. Recour	
Ċ	Aucun pack d'ét. tro	uvé			2 01	13-11-13 13: 26 👔	

Figure 6-39 Résultats de la recherche

4. Appuyez sur **Retour** pour retourner à l'écran Base de données de vérification d'étalonnage.

6.3.3.2 Affichage des détails relatifs aux données de test de vérification d'étalonnage

- 1. Cliquez sur les données de test de vérification d'étalonnage que vous souhaitez afficher.
- 2. Appuyez sur Détails. Le système affiche les détails suivants :

	Détails ver. étal.						
Paramètre	Etat du CQ	Résultat	Unité	Plage référence			
рН	Sous contrôle	7.300		[7.300-7.400]			
pO2	Sous contrôle	100	mmHg	[90-105]			
pCO2	Sous contrôle	40.0	mmHg	[35.0-45.0]			
Na+	Sous contrôle	142	mmol/L	[138-146]			
K+	Sous contrôle	4.2	mmol/L	[4.0-4.5]			
Ca++	Sous contrôle	1.20	mmol/L	[1.10-1.20]			
Cl-	Sous contrôle	100	mmol/L	[98-106]			
Glu	Sous contrôle	5.1	mmol/L	[4.9-5.8]	• Retour		
U Auc	un pack d'ét. trouvé			2013-11-	13 13: 26 🕐		

Figure 6-40 Détails des résultats du test de vérification d'étalonnage

- 3. Examinez les détails.
- 4. Appuyez sur **Retour** pour retourner à l'écran Base de données de vérification d'étalonnage.

6.3.3.3 Exportation/téléchargement/impression des données de test de vérification d'étalonnage

1. Ouvrez la base de données de vérification d'étalonnage.

Pour	Procédez de la façon suivante
Exporter	Insérez un disque amovible dans l'analyseur, puis appuyez sur Exporter.
Télécharger	Appuyez sur Télécharger .
Imprimer	Appuyez sur Imprimer .

2. Sélectionnez les données de test de vérification d'étalonnage souhaitées.

REMARQUE:

Si aucune donnée de test de vérification d'étalonnage n'est sélectionnée avant d'appuyer sur **Exporter/Télécharger/Imprimer**, toutes les données stockées dans la base de données de vérification d'étalonnage sont exportées/téléchargées/imprimées.

6.4 Test sur simulateur

6.4.1 Procédures du test sur simulateur externe

Pour effectuer un test sur simulateur externe, procédez comme suit :

- 1. Appuyez sur la touche **Marche/Arrêt** située sur le côté gauche de l'analyseur pour mettre ce dernier sous tension.
- 2. Entrez le nom d'utilisateur et mot de passe manuellement, puis appuyez sur

Pour numériser le code-barres du nom d'utilisateur, appuyez d'abord sur le code-barres.

	Connexion ut.	
Nom d'ut.		
MdP		
		→ Conn.
Util. rest. pack ét.:100 ,	jrs:30 🍋 🏺	2013-11-12 16: 20 🕗

Figure 6-41 Saisie du nom d'utilisateur et du mot de passe

- 3. Dans l'écran principal, appuyez sur pour accéder à l'écran Contrôle de qualité, puis appuyez sur
- 4. Insérez doucement le simulateur électronique externe dans le port de la cartouche, puis appuyez délicatement dessus pour vous assurer qu'elle est bien en place. Si le simulateur électronique est inséré correctement, le système effectue automatiquement un test sur simulateur.

Figure 6-42 Insertion du simulateur externe

REMARQUE :

- ✓ Evitez de toucher les plots de contact.
- ✓ Ne touchez jamais le simulateur après l'avoir inséré dans le système.
- 5. Le système démarre automatiquement pour effectuer un test sur simulateur externe.

	Simulateur activé					
	Patientez					
G	Util. rest. pack ét.:100 , jrs:30		2013-11-12 15: 39 🕧			

Figure 6-43 Mesure en cours

6. Le système affiche automatiquement le résultat à la fin du test.

Date et heure	Réu.ou éch.
2013-11-12 15:36:08	ОК
	🕂 Acc

Figure 6-44 Résultat du test sur simulateur externe

7. Examinez le résultat.

REMARQUE :

- ✓ A la fin du test, le message « Veuillez retirer la cartouche » s'affiche dans la barre d'état au bas de l'écran et le simulateur est éjecté.
- ✓ Si le système réussit le test sur simulateur externe, il peut être utilisé pour analyser des échantillons.
- ✓ Si le système échoue au test, procédez à un nouveau test ou essayez un autre simulateur. S'il réussit le test, le système peut être utilisé pour analyser des échantillons. S'il échoue à nouveau, contactez EDAN ou ses distributeurs agréés pour obtenir de l'aide.
- 8. Appuyez sur Accueil pour accéder à l'écran principal.
- 9. Retirez le simulateur externe du système, puis remettez-le en place.

REMARQUE:

Ne retirez jamais le simulateur externe tant que le test n'est pas terminé.

6.4.2 Base de données du simulateur

La base de données du simulateur affiche toutes les données de test sur simulateur et peut stocker jusqu'à 2 000 entrées. Le système affiche 50 entrées de données sur chaque page. Appuyez sur **Préc.** ou sur **Suivant** pour faire défiler les écrans des entrées de données affichées. Lorsque 80 % de l'espace est occupé, le système vous invite à exporter les données stockées vers un disque amovible (par exemple, une clé USB). Si les données ne sont pas exportées, le système vous invite toujours à exporter les données. Lorsque la base de données est pleine, le système vous invite toujours à exporter les données. Si les données ne sont toujours pas exportées, le système supprime automatiquement les anciennes données pour en stocker de nouvelles. Les opérations suivantes peuvent être effectuées dans la base de données (SGD) ou le SIH/LIS via une connexion Wi-Fi ou le réseau, exportation des données de test sur simulateur vers un disque amovible (par exemple, une clé USB), recherche et impression des données de test sur simulateur, etc.

Dans l'écran Base de données, appuyez sur pour accéder à l'écran Base de données du simulateur.

Figure 6-45 Ecran Base de données du simulateur

6.4.2.1 Recherche des données de test sur simulateur

- 1. Dans l'écran Base de données du simulateur, appuyez sur **Rechercher**.
- 2. Entrez les conditions de recherche, puis appuyez sur OK.

		Recherche sir	nulateur	
	ID opérat. Hre début Heure fin	2013 🔶 Annéel1 2013 🔶 Annéel1	Lun 12 Jour	
			V OK X Annul.	
Ċ	Util. rest. pack ét.:10	00 , jrs:30	🢶 🖊 2013-11-12 15: 39 (2

Figure 6-46 Saisie des conditions de recherche

3. Le système lance automatiquement la recherche et affiche les résultats.

Figure 6-47 Résultats de la recherche

4. Appuyez sur **Retour** pour retourner à l'écran Base de données du simulateur.

6.4.2.2 Exportation/téléchargement/impression des données de test sur simulateur

- 1. Ouvrez la base de données de tests sur simulateur.
- 2. Sélectionnez les données de test sur simulateur souhaitées.

Pour	Procédez de la façon suivante
Exporter	Insérez un disque amovible dans l'analyseur, puis appuyez sur Exporter.
Télécharger	Appuyez sur Télécharger .
Imprimer	Appuyez sur Imprimer.

REMARQUE :

Si aucune donnée de test sur simulateur n'est sélectionnée avant d'appuyer sur **Exporter/Télécharger/Imprimer**, toutes les données stockées dans la base de données du simulateur seront exportées/téléchargées/imprimées.

Voici quelques exemples de rapports de test sur simulateur :

Rapport de test sur simulateur externe

EDAN i15	
ID système	201303200023
Type de rapport	Simulateur externe
Heure d'impression	2012-03-20 15:20:00
Heure du test	2012-03-20 15:20:00
ID opérateur	admin
Simulateur	ОК

Rapport de test sur simulateur interne

EDAN i15

ID système	201303200023		
Type de rapport	Simulateur interne		
Heure d'impression	2012-03-20 15:20:00		
Heure du test	2012-03-20 15:20:00		
ID opérateur	admin		
Simulateur	ОК		

Chapitre 7 Gestion des données

7.1 Introduction

Le système inclut des fonctions de gestion de données performantes. Il peut gérer de façon logique les résultats des différents tests et les transmettre au SGD ou au SIH/LIS.

Vous pouvez transmettre les données de deux façons :

- A l'aide d'un disque amovible, tel qu'une clé USB
- Via un réseau LAN/WLAN

REMARQUE:

Les données transmises peuvent être uniquement ouvertes par le SGD.

Dans l'écran principal, appuyez sur pour accéder à l'écran Base de données.

Figure 7-1 Ecran Base de données

7.2 Bases de données

Les bases de données suivantes ont été décrites dans les chapitres précédents : Base de données de patients, Base de données de contrôles, Base de données de tests d'aptitude, Base de données de vérification d'étalonnage, Base de données du simulateur. Dans cette partie, les bases de données ci-dessous sont décrites : Base de données de sécurité, Base de données de diagnostics,

Base de données de journaux d'événements et sauvegarde.

7.2.1 Base de données de sécurité

REMARQUE :

Seuls les administrateurs peuvent accéder à la base de données de sécurité.

Par défaut, la base de données de sécurité affiche toutes les données de sécurité et peut stocker jusqu'à 100 entrées. Le système affiche 50 entrées de données sur chaque page. Appuyez sur **Préc.** ou sur **Suivant** pour faire défiler les écrans des entrées de données affichées. Les opérations suivantes peuvent être effectuées dans la base de données de sécurité : suppression des données de sécurité, recherche d'opérateurs, ajout et modification des données de sécurité, etc.

Dans l'écran Base de données, appuyez sur 😰 pour accéder à l'écran Base de données de sécurité.

		BdD de sécurité	
Util.	Admin.		
ID	opérat.	MdP	$\Box \mathbf{Q} \mathbf{V}$
	1	1111	Recher. Modif. + Ajouter Suppr.
Pge: 1/1			Préc. Suiv.
Util. re	st. pack ét.:100 , jrs:3	o 🥌 🖊	2013-11-12 15: 39 🕜

Figure 7-2 Ecran Base de données de sécurité

Les opérateurs sont divisés en quatre niveaux selon leurs droits d'accès : opérateurs, administrateurs, techniciens de maintenance et ingénieurs du fabricant. Si un opérateur ne parvient pas à accéder à une fonction, le message suivant apparaît :

Figure 7-3 Aucun droits d'accès

7.2.1.1 Recherche d'un opérateur

- 1. Dans l'écran Base de données de sécurité, appuyez sur **Rechercher**.
- 2. Entrez l'ID opérateur, puis appuyez sur OK.

		Recherche sécur	ité
	ID opérat.		
			V OK X Annul.
Ċ	Util. rest. pack ét.:100 , jrs::	30	💶 岸 2013-11-12 15: 39 🕘

Figure 7-4 Saisie des conditions de recherche

3. Le système lance automatiquement la recherche et affiche les résultats.

	Rés. recherc	he sécurité			
Util.					
ID opérat.		MdP		Q	1
1	<u> </u>	1111		Recher.	Modif.
Pge: 1/1					
Util. rest. pack é	::100 , jrs:30	1	2013	-11-12 15:	39 🕘

Figure 7-5 Résultats de la recherche

4. Appuyez sur **Retour** pour retourner à l'écran Base de données de sécurité.

7.2.1.2 Ajout d'un opérateur

- 1. Dans l'écran Base de données de sécurité, appuyez sur Ajouter.
- 2. Entrez l'ID opérateur, le mot de passe et entrez à nouveau le même mot de passe.

Ajout opérateur					
ID opérat.	1	Cet ID existe déjà			
MdP:	****				
Ressaisir MDP :	****	Corriger			
		V OK X Annul.			
Util. rest. pack ét.:100 , jrs:30		💶 🛱 2013-11-12 13: 45 🕧			

Figure 7-6 Ajout d'un opérateur

3. Appuyez sur **OK** pour enregistrer les modifications, puis appuyez sur **OK** dans la boîte de dialogue qui s'affiche. Le système bascule vers l'écran Base de données de sécurité.

REMARQUE:

- ✓ L'ID opérateur est sensible à la casse et doit contenir entre 1 et 16 caractères (combinaison de lettres et chiffres admise). La saisie de « admin/demo/service/ edan » ou de combinaisons de lettres minuscules et majuscules de ces mots n'est pas autorisée.
- ✓ Le mot de passe est sensible à la casse et doit contenir entre 4 et 16 caractères (combinaison de lettres et chiffres admise).
- 7.2.1.3 Modification du mot de passe de l'opérateur
 - 1. Sélectionnez les données de l'opérateur à modifier.
 - 2. Appuyez sur **Modifier**.
 - 3. Entrez le mot de passe à deux reprises.

_	Mod	if. mot de passe
	ID opérat.	1
	MdP:	
	Ressaisir MDP :	
		V OK X Annul.
Ċ	Util. rest. pack ét.:100 , jrs:30	💶 岸 2013-11-12 13: 45 🕧

Figure 7-7 Modification du mot de passe de l'opérateur

4. Appuyez sur **OK** pour enregistrer les modifications, puis appuyez sur **OK** dans la boîte de dialogue qui s'affiche. Le système bascule vers l'écran Base de données de sécurité.

REMARQUE :

Le mot de passe est sensible à la casse et doit contenir entre 4 et 16 caractères (combinaison de lettres et chiffres admise).

7.2.1.4 Suppression des données de sécurité

- 1. Sélectionnez les données de sécurité souhaitées.
- 2. Appuyez sur Supprimer, puis appuyez sur OK dans le message contextuel.

REMARQUE :

Si aucune donnée de sécurité n'est sélectionnée avant d'appuyer sur **Supprimer**, toutes les données stockées dans la base de données de sécurité seront supprimées.

7.2.1.5 Modification du mot de passe système

- 1. Appuyez sur le bouton Administrateur de l'écran Base de données de sécurité.
- 2. Appuyez sur Modifier.
- 3. Entrez le mot de passe système actuel, entrez le nouveau mot de passe système et entrez à nouveau le même mot de passe.

Entrer mot passe	e act.		
Entrer nouv. mt p	pas.		
Ressaisir nouv. m	nt pas.		
		Q2	

Figure 7-8 Modification du mot de passe système

4. Appuyez sur **OK** pour accepter les modifications, puis sur **OK** dans la boîte de dialogue qui s'affiche. Le système bascule vers l'écran Connexion utilisateur.

REMARQUE :

- ✓ Le mot de passe système configuré en usine est 123456.
- Seuls les administrateurs peuvent modifier le mot de passe système (même les ingénieurs du fabricant ne peuvent pas le modifier, bien qu'ils puissent récupérer le mot de passe par défaut configuré en usine).

7.2.2 Base de données de diagnostics

Par défaut, la base de données de diagnostics affiche les données de diagnostic du dernier mois. Elle peut stocker jusqu'à 10 000 entrées. Les opérations suivantes peuvent être effectuées dans la base de données de diagnostics : exportation des données de diagnostic vers un disque amovible (par exemple, une clé USB), affichage des détails des données de diagnostic, recherche et impression des données de diagnostic, etc.

REMARQUE:

Seuls les techniciens de maintenance et les ingénieurs du fabricant peuvent accéder à la base de données de diagnostics.

7.2.3 Base de données des journaux d'événements

La base de données de journaux d'événements enregistre les informations suivantes : connexion et déconnexion de l'utilisateur, modification de l'heure et de la date, modification des pentes et des décalages, modification des informations patient, suppression des données stockées dans les bases de données, remplacement d'un module de solution étalon. Elle peut stocker jusqu'à 10 000 entrées de données. Le système affiche 50 entrées de données sur chaque page. Appuyez sur **Préc.** ou sur **Suivant** pour faire défiler les écrans des entrées de données affichées. Vous pouvez exporter, rechercher et imprimer les événements de la base de données de journaux d'événements.

Dans l'écran Base de données, appuyez sur pour accéder à l'écran Base de données des journaux d'événements.

BdD de journaux d'év.							
N°	Date et heure	ID opérat.	Opération				
1	2013-11-12 15:01:37	admin	Modif. date/heure	Impr. Export.			
2	2013-11-12 15:00:05	admin	Connexion	Q			
3	2013-11-12 14:49:35	admin	Connexion	Recher.			
Pge: 1/1	Afficher der. données me	ns.		Préc. Suiv.			
Ċ	Util. rest. pack ét.:100 , jrs:	30	🥶 🛱	2013-11-12 15: 39 📀			

Figure 7-9 Ecran Base de données des journaux d'événements

7.2.3.1 Recherche de données d'événements

- 1. Dans l'écran Base de données des journaux d'événements, appuyez sur Rechercher.
- 2. Entrez les conditions de recherche, puis appuyez sur OK.

Recherche jour. év.						
	ID opérat. Hre début Heure fin	2013 Annéell Lun 12 Jour 2013 Annéell Lun 12 Jour				
		V OK X Annul.				
Ċ	Util. rest. pack ét.:10	0, jrs:30 🦷 📛 2013-11-12 15: 39 🧃				

Figure 7-10 Saisie des conditions de recherche

3. Le système lance automatiquement la recherche et affiche les résultats.

Rés. recherche jour. év.							
[N°	Date et heure	ID opérat.	Opération				
1	2013-11-12 15:01:37	admin	Modif. date/heure		Impr. Export.		
2	2013-11-12 15:00:05	admin	Connexion		Q,		
3	2013-11-12 14:49:35	admin	Connexion		Recher.		
					Préc.		
				-	Retour		
Pge: 1/1	Afficher der. données mens	5.					
Ċ	Util. rest. pack ét.:100 , jrs:3	D	🖷 🖗	201	3-11-12 15: 39 📀		

Figure 7-11 Résultats de la recherche

4. Appuyez sur Retour pour retourner à l'écran Base de données des journaux d'événements.

7.2.3.2 Exportation/Impression des données d'événements

- 1. Ouvrez la base de données des journaux d'événements.
- 2. Sélectionnez les données d'événement souhaitées.

Pour	Procédez de la façon suivante
Exporter	Insérez un disque amovible dans l'analyseur, puis appuyez sur Exporter.
Imprimer	Appuyez sur Imprimer .

REMARQUE :

Si aucune donnée d'événement n'est sélectionnée avant d'appuyer sur **Exporter/ Imprimer**, toutes les données stockées dans la base de données des journaux d'événements seront exportées/imprimées.

Voici un exemple de rapport de journal d'événements :

EDAN i15	
ID système	201303200023
Type de rapport	Rapport de journal d'événements
Heure d'impression	2012-03-20 15:20:00
Heure de journalisation	2012-03-20 15:20:00
ID opérateur	1111
Opération Modifier la	date et l'heure

7.2.4 Sauvegarde

Cette fonction permet de sauvegarder toutes les données stockées dans les bases de données suivantes : Base de données d'échantillons patient, Base de données de contrôles, Base de données de tests d'aptitude, Base de données de vérification d'étalonnage et Base de données du simulateur.

Pour sauvegarder des données, procédez comme suit :

1. Dans l'écran Base de données, appuyez sur voir pour accéder à l'écran Sauvegarde.

 Sauvegarde				
BdD échantillons patient	BdD de commandes			
BdD de ver. étalons	BdD de simulateurs			
BdD de compétences				
Util. rest. pack ét.:100 , jrs:30	CK Annui.			

Figure 7-12 Ecran Sauvegarde

- Sélectionnez la base de données que vous souhaitez sauvegarder. La coche √ indique que la base de données est sélectionnée.
- 3. Appuyez sur **OK**, puis sur **OK** dans la boîte de dialogue qui s'affiche. Le système sauvegarde alors toutes les données stockées dans la base de données.
- 4. Appuyez sur **OK** dans la boîte de dialogue qui s'affiche pour supprimer toutes les données de la base de données de sauvegarde.

ATTENTION

L'opération de suppression des données de la base de données de sauvegarde ne peut pas être annulée. Les données supprimées ne peuvent pas être récupérées une fois qu'elles ont été supprimées.

Chapitre 8 Dépannage

Le tableau suivant dresse la liste de certains problèmes que vous pouvez rencontrer afin de vous assister dans vos opérations de dépannage.

Elément	Problème	Solution
1	La cartouche de test n'est pas éjectée automatiquement une fois le test terminé.	Si le système fonctionne correctement, retirez le bouchon de l'éjecteur de la cartouche de test, tirez l'orifice central à l'aide d'un objet pointu et retirez la cartouche de test du système.
2	Une cartouche de test est insérée dans le système avant la réalisation d'un test.	Retirez le bouchon de l'éjecteur de la cartouche de test, tirez l'orifice central à l'aide d'un objet pointu et retirez la cartouche de test du système.
3	Le simulateur n'est pas éjecté automatiquement une fois le test sur simulateur terminé.	Retirez le bouchon de l'éjecteur de la cartouche de test, tirez l'orifice central à l'aide d'un objet pointu et retirez le simulateur du système.
4	La cartouche de test ne peut pas être retirée en raison d'une coupure d'alimentation pendant l'utilisation du système.	Branchez le système à l'alimentation secteur et mettez le système sous tension. Après environ 1 minute, la cartouche de test est automatiquement éjectée. Si la cartouche n'est pas éjectée automatiquement, retirez le bouchon de l'éjecteur de la cartouche de test, tirez l'orifice central à l'aide d'un objet pointu et retirez la cartouche de test du système.
5	La cartouche de test ne peut pas être éjectée en raison d'un dysfonctionnement du système (par exemple, le système tombe en panne).	Redémarrez le système. Après environ 1 minute, la cartouche de test est automatiquement éjectée. Si la cartouche n'est pas éjectée automatiquement, retirez le bouchon de l'éjecteur de la cartouche de test, tirez l'orifice central à l'aide d'un objet pointu et retirez la cartouche de test du système.

Tableau 8-1 Exemples de dépannage

Elément	Problème	Solution		
6	Le message « Cartouche non conforme » s'affiche.	Effectuez un test sur simulateur électronique pour vérifier que le système fonctionne correctement. Si le système réussit le test sur simulateur, effectuez les tests à l'aide de cartouches neuves. Si le problème persiste après plusieurs tentatives, contactez EDAN ou ses distributeurs agréés pour obtenir de l'aide.		
7	L'invite « Mauvais contact de POGO_PIN » s'affiche.	Effectuez à nouveau le test à l'aide d'une cartouche de test neuve. Si l'invite s'affiche à nouveau, contactez EDAN ou ses distributeurs agréés pour obtenir de l'aide.		
8	L'invite « Cartouche périmée » s'affiche.	Vérifiez que la date actuelle est correcte. Si l'invite s'affiche à nouveau, vérifiez que la cartouche de test n'est pas périmée. Si elle est périmée, utilisez une nouvelle cartouche de test dotée d'une date de péremption valide.		
9	L'invite « Etalon incorrectement aspiré » s'affiche.	Effectuez à nouveau le test à l'aide d'une cartouche de test neuve. Si l'invite s'affiche à nouveau, contactez EDAN ou ses distributeurs agréés pour obtenir de l'aide.		
10	L'invite « Air incorrectement aspiré » s'affiche.	Effectuez à nouveau le test à l'aide d'une cartouche de test neuve. Si l'invite s'affiche à nouveau, contactez EDAN ou ses distributeurs agréés pour obtenir de l'aide.		
11	Le message « Erreur d'échantillonnage. Présence éventuelle de caillots dans l'échantillon » s'affiche.	Vérifiez que l'échantillon de sang est exempt de caillots. En présence de caillots, jetez la cartouche et prélevez de nouveaux échantillons.		
12	Le message « Erreur d'insertion » s'affiche.	Vérifiez qu'un simulateur est inséré pendant un test sur simulateur et qu'une cartouche de test est insérée pendant un test.		
Elément	Problème	Solution		
---------	--	--	--	--
13	L'invite « Pack d'étalons périmé, vérifiez le réglage de la date et la date de péremption du pack d'étalons » s'affiche.	Vérifiez que la date actuelle est correcte. Si l'invite s'affiche à nouveau, vérifiez que le pack de solutions étalons n'est pas périmé. S'il est périmé, remplacez le pack de solutions étalons conformément aux instructions du manuel d'utilisation.		
14	L'invite « Jours restants : 0 » s'affiche.	Le pack de solutions étalons est périmé. Remplacez le pack de solutions étalons conformément aux instructions du manuel d'utilisation.		
15	L'invite « Pack d'étalons épuisé » s'affiche.	Le pack de solutions étalons est épuisé. Remplacez le pack de solutions étalons conformément aux instructions du manuel d'utilisation.		
16	L'invite « Date actuelle incorrecte » s'affiche.	La date est antérieure à la date de fabrication du pack de solutions étalons. Assurez-vous que la date actuelle est correcte.		
17	L'invite « Retrait incorrect du pack d'étalons. Veuillez remplacer le pack de solutions étalons » s'affiche.	Le pack de solutions étalons a été incorrectement retiré du système. Remplacez le pack de solutions étalons conformément aux instructions du manuel d'utilisation.		
18	L'invite « Impossible d'identifier le code-barres » s'affiche.	Assurez-vous que le code-barres correspond à un pack de solutions étalons.		
19	L'invite « Impossible d'utiliser le pack d'étalons. Veuillez procéder à une nouvelle numérisation » s'affiche.	Assurez-vous que le code-barres correspond à un pack de solutions étalons et que la date de péremption du nouveau pack est toujours valide.		
20	La porte de la chambre du pack de solutions étalons ne peut pas être ouverte.	Assurez-vous que le loquet de la chambre du pack de solutions étalons a été déverrouillé avant l'ouverture de la porte.		
21	Le système ne parvient pas à numériser le code-barres du pack de solutions étalons ou de la cartouche de test.	Vérifiez que le code-barres du pack de solutions étalons ou de la cartouche de test n'est pas détruit et numérisez-le à nouveau.		

Elément	Problème	Solution		
22	Le papier est bloqué dans le bac.	Ouvrez le boîtier de l'imprimante, ajustez soigneusement la position du papier et fermez le boîtier de l'imprimante. Appuyez sur Imprimer pour imprimer un enregistrement.		
23	Un message de bourrage papier s'affiche.	Si un bourrage se produit pour la première fois, il peut être dû à un positionnement incorrect du papier. Dans ce cas, ouvrez le compartiment du papier, retirez le papier du bac, retirez le papier présentant des plis, placez à nouveau du papier dans le bac, ajustez soigneusement la position du papier et fermez le compartiment. Si le problème persiste, contactez EDAN ou ses distributeurs agréés pour obtenir de l'aide.		
24	L'invite « Pas de papier dans l'imprimante » s'affiche.	Vérifiez si le bac de l'imprimante contient du papier. S'il est vide, chargez à nouveau du papier et fermez le boîtier de l'imprimante. Si le problème persiste, contactez EDAN ou ses distributeurs agréés pour obtenir de l'aide.		
25	Aucun son n'est émis après l'effleurement de l'écran tactile.	Vérifiez le réglage du volume.		
26	Le système ne peut pas être connecté à un réseau via une connexion Wi-Fi.	Vérifiez que l'intensité du signal réseau est suffisamment élevée et que la configuration réseau est correcte.		
27	Le système ne parvient pas à communiquer avec le SGD.	Assurez-vous que le réseau ou la connexion Wi-Fi est correctement connecté(e) et que l'adresse IP du SGD est correcte.		
28	Des liquides ont été déversés sur l'écran.	Nettoyez et désinfectez l'écran conformément aux instructions du manuel d'utilisation.		
29	Le scanner USB ne fonctionne pas correctement.	Vérifiez le type de scanner. S'il correspond à un modèle recommandé par EDAN, retirez-le du système et insérez-le à nouveau. Réglez le scanner et numérisez à nouveau un code-barres.		

Elément	Problème	Solution
30	Oubli du nom d'utilisateur ou du mot de passe.	Pour un opérateur, contactez l'administrateur pour obtenir de l'aide. Pour un administrateur, contactez EDAN ou ses distributeurs agréés pour obtenir de l'aide.
31	La batterie au lithium ne peut pas être chargée.	Installez la batterie au lithium conformément aux instructions du manuel d'utilisation. Branchez le système à l'alimentation secteur. Le système sera chargé automatiquement. S'il ne peut toujours pas être chargé, contactez EDAN ou ses distributeurs agréés pour obtenir de l'aide.
32	Des liquides s'écoulent de la partie inférieure de l'analyseur.	Déplacez l'analyseur à l'horizontale et évacuez les liquides. Retirez le module de solution étalon de l'analyseur et vérifiez s'il est endommagé. S'il n'est pas endommagé, effectuez un test sur simulateur et un test de contrôle pour vérifier le bon fonctionnement du système.
33	L'invite « Température ambiante hors plage » s'affiche.	Vérifiez que la température ambiante est comprise entre 10 et 31 °°C et que les prises d'air ne sont pas obstruées. Redémarrez le système. Si le problème persiste, contactez EDAN ou ses distributeurs agréés pour obtenir de l'aide.
34	L'invite « Etat de chauffe anormal » s'affiche.	Contactez EDAN ou ses distributeurs agréés pour obtenir de l'aide.
35	L'invite « Emplacement Cam anormal » s'affiche.	Contactez EDAN ou ses distributeurs agréés pour obtenir de l'aide.
36	Le réglage de la date ne peut pas être enregistré après l'arrêt du système.	Contactez EDAN ou ses distributeurs agréés pour obtenir de l'aide.
37	Le système produit des sons anormaux.	Contactez EDAN ou ses distributeurs agréés pour obtenir de l'aide.

Chapitre 9 Nettoyage, entretien et maintenance

Le système nécessite peu d'entretien et de maintenance. Nettoyez-le et faites-le vérifier régulièrement pour assurer des performances optimales.

9.1 Nettoyage et désinfection de l'analyseur

Respectez les consignes de sécurité adéquates et prenez des mesures de protection, par exemple, en portant des gants homologués lors du nettoyage et de la désinfection du système.

REMARQUE :

- Suivez les instructions contenues dans ce manuel pour nettoyer et désinfecter le système.
- ✓ La partie intérieure du port de la cartouche de test ne doit jamais être nettoyée.
- ✓ Les cartouches de test et les modules de solutions étalons ne doivent jamais être nettoyés.

9.1.1 Nettoyage et désinfection des surfaces extérieures

Nettoyez et désinfectez les surfaces extérieures pour éliminer la poussière, les éclaboussures, les taches de sang, etc. Les règles concernant les intervalles de nettoyage et de désinfection relèvent de la responsabilité de votre établissement.

Pour nettoyer et désinfecter les surfaces extérieures, procédez comme suit :

- 1. Mettez l'analyseur hors tension.
- 2. Débranchez le cordon d'alimentation et l'adaptateur d'alimentation.

Débranchez les câbles de raccordement si le système est branché à d'autres pièces de l'équipement.

3. Humidifiez un chiffon non pelucheux avec 0,5 % de solution d'hypochlorite de sodium.

REMARQUE :

Le chiffon doit être humide et non mouillé.

- 4. Nettoyez les surfaces extérieures avec le chiffon humide.
- 5. Nettoyez les surfaces avec le chiffon humide pour les désinfecter une fois les surfaces complètement sèches.

REMARQUE :

- ✓ Nettoyez les surfaces avant de les désinfecter.
- ✓ Veillez à ce que les surfaces soient parfaitement sèches avant de les désinfecter.
- 6. Une fois les surfaces sèches, rebranchez le cordon d'alimentation, l'adaptateur d'alimentation et les autres câbles de raccordement.

9.1.2 Nettoyage et désinfection de l'écran

Nettoyez et désinfectez l'écran pour éliminer la poussière, les éclaboussures, les taches de sang, etc. Les règles concernant les intervalles de nettoyage et de désinfection relèvent de la responsabilité de votre établissement. Pour nettoyer et désinfecter l'écran, procédez comme suit :

1. Humidifiez un chiffon non pelucheux avec 0,5 % de solution d'hypochlorite de sodium.

REMARQUE:

Le chiffon doit être humide et non mouillé.

- 2. Dans l'écran principal, appuyez sur 🔀 pour accéder à l'écran Configuration.
- 3. Appuyez sur le bouton 🕑 de l'écran Configuration système.
- Sélectionnez la période pendant laquelle le système n'obtiendra pas de réponse lorsque vous effleurez l'écran. Quatre options sont disponibles : 30 secondes, 1 minute, 2 minutes et 5 minutes. Le paramètre par défaut est de 30 secondes.

Nett. écran							
	Tps nett. 30 s Nett. écran	V					
			• Retour				
Ċ	Util. rest. pack ét.:100 , jrs:30	🍋 🛱	2013-11-12 15: 39 🕧				

5. Appuyez sur Nettoyer l'écran. Le système affiche l'écran ci-dessous :

Figure 10-2 Temps restant

- 6. Nettoyez l'écran à l'aide d'un chiffon non pelucheux.
- Répétez les étapes 4-6 pour désinfecter l'écran à l'aide d'un chiffon non pelucheux une fois l'écran complètement sec.

REMARQUE :

- ✓ Nettoyez l'écran avant désinfection.
- ✓ Assurez-vous que l'écran est parfaitement sec avant de le désinfecter.
- 8. Appuyez sur **Retour** à deux reprises pour retourner à l'écran principal.

9.1.3 Nettoyage de la tête d'imprimante

Les têtes d'imprimante sales et tachées réduisent la définition d'impression. Elles doivent donc être nettoyées au moins une fois par mois.

Ouvrez le boîtier de l'imprimante et retirez le papier à imprimante. Essuyez délicatement la tête d'imprimante à l'aide d'un chiffon doux et propre imbibé d'alcool à 75 %. Si des taches persistent, trempez-les dans une petite quantité d'alcool, puis essuyez-les à l'aide d'un chiffon doux propre. Après avoir laissé sécher l'appareil, chargez le papier à imprimante et refermez le boîtier de l'imprimante.

ATTENTION

- Veillez à ce qu'aucun détergent ne pénètre dans le système pendant le nettoyage. N'immergez en aucun cas l'analyseur.
- 2. Ne nettoyez pas le système à l'aide d'un tissu abrasif.

9.2 Entretien et maintenance

9.2.1 Recharge et remplacement de la batterie

Identification de la capacité

La capacité de courant de la batterie rechargeable peut être identifiée d'après le symbole de batterie situé dans la barre d'état au bas de l'écran LCD :

batterie pleine.

I: la batterie n'est pas pleine.

L: la capacité est limitée, une recharge doit être envisagée.

: la capacité est faible, la batterie doit être bientôt rechargée.

U: la batterie est vide. La batterie doit être rechargée immédiatement.

REMARQUE:

- Si le système est uniquement alimenté sur secteur, le symbole de l'adaptateur
 apparaît dans la barre d'état au bas de l'écran.
- ✓ Si l'analyseur est uniquement alimenté par la batterie, l'un des symboles ci-dessus apparaît dans la barre d'état au bas de l'écran.
- ✓ Si l'analyseur est alimenté par la batterie et le secteur, et que la batterie n'est pas complètement chargée, le symbole apparaît dans la barre d'état au bas de l'écran.

Recharge

L'analyseur est équipé d'un circuit de commande de recharge doté d'une batterie au lithium rechargeable. Lorsque l'appareil est branché à l'alimentation secteur, la batterie est automatiquement rechargée. En raison de la capacité absorbée durant les phases de stockage et le transport, la batterie n'est pas pleine lorsqu'elle est utilisée pour la première fois. Une recharge de la batterie doit être envisagée avant la première utilisation.

REMARQUE:

Si la batterie n'a pas été utilisée pendant plus de deux mois, elle doit être rechargée avant utilisation.

Remplacement

Lorsque la durée de vie utile de la batterie arrive à son terme, ou qu'une mauvaise odeur ou une fuite est détectée, contactez EDAN ou ses distributeurs agréés pour la remplacer.

AVERTISSEMENT

- 1. Seule la batterie correspondant au modèle et aux caractéristiques indiqués par EDAN doit être utilisée.
- 2. Danger d'explosion N'inversez pas l'anode et la cathode lors de l'installation de la batterie.
- 3. Retirez la batterie du système si elle n'est pas utilisée pendant une période prolongée.
- 4. Si la batterie est stockée seule et reste inutilisée pendant une période prolongée, il est recommandé de la charger au moins une fois tous les 6 mois pour éviter qu'elle ne soit trop déchargée.
- Lorsque la durée de vie utile de la batterie arrive à son terme, contactez EDAN ou le distributeur local pour le recyclage ou la mise au rebut de la batterie conformément aux réglementations locales.

9.2.2 Papier à imprimante

ATTENTION

Utilisez uniquement le papier à imprimante fourni par EDAN ou ses distributeurs agréés, sous peine d'endommager l'imprimante. Ce type de dommage n'est pas couvert par la garantie.

Conditions de stockage :

- Ne placez pas le papier à imprimante sous une lumière fluorescente pendant une période prolongée.
- Le papier à imprimante doit être stocké à un endroit sec, sombre et frais afin d'éviter toute température, humidité et lumière excessives.
- Assurez-vous que l'environnement de stockage est exempt de chlorure de polyvinyle ou d'autres substances chimiques afin de ne pas altérer la couleur du papier.

9.2.3 Maintenance de l'analyseur

Les contrôles de sécurité suivants doivent être réalisés au moins tous les 24 mois par une personne qualifiée dûment formée, et disposant des connaissances et de l'expérience pratique nécessaires pour effectuer ces tests.

- a) Recherchez d'éventuels signes d'endommagement fonctionnel et mécanique sur l'analyseur et les accessoires.
- b) Vérifiez que les étiquettes de sécurité sont lisibles.
- c) Vérifiez que l'analyseur fonctionne correctement, conformément aux instructions d'utilisation.

Si l'analyseur ne fonctionne pas correctement ou échoue aux tests ci-dessus, il doit être réparé.

AVERTISSEMENT

Tout manquement de la part de l'hôpital ou de l'établissement responsable faisant usage de cet équipement à mettre en œuvre un programme de maintenance satisfaisant peut provoquer des défaillances excessives de l'équipement.

Analyseur :

- Protégez l'analyseur des températures excessives, de la lumière directe du soleil, de l'humidité et de la saleté.
- Evitez de secouer violemment l'analyseur lors de son déplacement vers un autre endroit.
- Evitez tout déversement de liquide dans l'analyseur.

Chapitre 10 Théorie

Le système fait appel à la potentiométrie et l'ampérométrie pour déterminer les concentrations de gaz et de biochimie du sang, et à la conductivité pour déterminer la concentration de globules rouges (Hct). De nombreux paramètres peuvent également être calculés, par exemple cH⁺, HCO₃⁻act, HCO₃⁻std, BE(ecf), BE(B), BB(B), etc.

10.1 Méthode de mesure

Méthodes

Les mesures sont effectuées sur des échantillons non dilués. Les méthodes non diluées sont également appelées méthodes directes, alors que les méthodes de dilution de l'échantillon sont appelées méthodes indirectes.

Pour les électrolytes, les méthodes directes mesurent la concentration en ions libres des analytes (activité ionique apparente ou libre) par unité volumétrique d'eau plasmatique, et les méthodes indirectes mesurent la concentration d'analytes par unité volumétrique de plasma. On sait que la méthode directe fournit des résultats cliniquement significatifs pour les électrolytes. Lorsqu'il y a divergence entre les méthodes, par exemple, lorsque le patient présente des niveaux totaux de protéines ou de lipides anormaux, cette divergence résulte des interférences sur la méthode indirecte. A des niveaux de protéines et de lipides normaux, le décalage systématique entre les méthodes est souvent corrigé dans les instruments de mesure directe commerciaux afin que les plages normales de tous les instruments soient en accord. Les capteurs ont été étalonnés en usine afin que les plages normales soient en accord avec les méthodes de référence indirectes à des niveaux de protéines et de lipides normaux.

La mesure directe de l'hématocrite par la technique de conductimétrie produit un résultat associé à la fraction du volume exclu non conducteur de l'échantillon. Le volume de globules rouges est le principal composant du volume non conducteur. Toutefois, ce volume est également constitué de protéines, de lipides et de globules blancs. Des valeurs élevées d'hématocrite sont attendues lorsque des niveaux anormalement élevés de ces composants sont détectés. Une réduction des valeurs d'hématocrite est escomptée si les niveaux de protéines sont anormalement bas, par exemple, dans les échantillons hémodilués prélevés à partir d'un pontage cardiopulmonaire. Un déséquilibre osmotique engendre un écart entre les mesures directes (conductimétrie, par centrifugation) et indirectes (Coulter) en raison de la variation du volume globulaire moyen.

Capteurs

Le capteur désigne l'électrode intégrée aux cartouches de test. Il existe trois types de capteurs différents :

- Capteur potentiométrique
- Capteur ampérométrique
- Capteur conductimétrique

Potentiométrie : un potentiel est enregistré à l'aide d'un voltmètre, qui est lié à la concentration de l'échantillon. Une électrode de référence est utilisée pour fournir un potentiel stable et fixe par rapport auquel d'autres différences de potentiel peuvent être mesurées. Cette technique de mesure est utilisée pour le pH, la pCO_2 et les électrolytes.

Ampérométrie : l'amplitude du flux de courant électrique est proportionnelle à la concentration de la substance oxydée ou réduite sur une électrode. Cette technique de mesure est utilisée pour pO_2 , le glucose et l'acide lactique.

Conductivité : l'impédance spécifique d'un échantillon mesuré par deux électrodes conductrices maintenues à une tension constante est directement proportionnelle aux propriétés conductrices de l'échantillon. Cette technique est utilisée pour l'Hct.

10.2 Détermination des résultats de test

10.2.1 Détermination de la concentration d'analytes

La concentration d'analytes est déterminée à l'aide des capteurs potentiométriques et ampérométriques. Pour les deux capteurs, la concentration d'analytes est calculée à partir de :

- la concentration d'analytes connue de la solution étalon ;
- la tension ou le courant mesurés de la solution étalon ;
- la tension ou le courant mesurés de l'échantillon.

Pour les capteurs potentiométriques, l'activité des analytes dans l'échantillon est calculée à partir de l'équation de Nerst :

 $E_{\text{\acute{e}chantillon}} - E_{\text{\acute{e}talon}} = S \log (\alpha_{\text{\acute{e}chantillon}} / \alpha_{\text{\acute{e}talon}})$

Où E désigne le potentiel, α, l'activité d'un ion et S, la pente du capteur.

10.2.2 Détermination de la concentration cellulaire

Hct

Dans le sang total, les constituants cellulaires, les globules rouges et blancs et les plaquettes ne conduisent pas l'électricité, contrairement au plasma. Pour un échantillon dont la concentration d'électrolytes est donnée, plus il y a de cellules, plus la conductivité est faible. La concentration cellulaire du sang total est déterminée à partir :

- de la valeur connue de la concentration d'électrolytes dans l'étalon ;
- de la concentration d'électrolytes mesurée de l'échantillon ;
- du signal de conductivité mesuré généré par l'étalon ;
- du signal de conductivité mesuré généré par l'échantillon.

CPB

Lorsque des échantillons contenant des niveaux de protéines anormalement faibles sont testés, le système doit utiliser l'algorithme de compensation CPB. Cet algorithme est spécialement conçu pour être utilisé lorsque des échantillons sont prélevés sur des patients soumis à un pontage cardiopulmonaire. Il s'applique également à l'adulte présentant des niveaux de protéines anormalement faibles.

10.3 Equations relatives aux paramètres calculés

cH⁺

Concentration en ions hydrogène

 $cH^+ = 10^{(9-pH)} [nmol/L]$

HCO_{3 act}

Concentration en ions bicarbonates

 HCO_3 act = 0.0307 × pCO_2 × 10^(pH - 6.105) [mmol/L]

HCO_{3 std}

Concentration en ions bicarbonates normalisée à un pCO_2 de 40 mmHg

 HCO_3 std = 24,5 + 0,9 × A + [(A - 2,9)² × (2,65 + 0,31 × tHb (est))] / 1 000 [mmol/L]

Où A = BE (B) – $[0,2 \times \text{tHb (est)} \times (100 - \text{sO}_2 \text{ (est)})] / 100$, tHb (est) peut être saisi par les utilisateurs et la valeur par défaut de tHb (est) est 15 g/dL.

BE (ecf)

Excès de base (ecf)

BE (ecf) = HCO_3 act - 24,8 + (16,2 × (pH - 7,40)) [mmol/L]

BE (B)

Excès de base (B)

BE (B) = $(1 - 0.014 \times \text{tHb (est)}) \times [\text{HCO}_3\text{-}act - 24.8 + (1.43 \times \text{tHb (est)} + 7.7) \times (\text{pH} - 7.40)]$ [mmol/L]

Où tHb (est) peut être saisi par les utilisateurs et la valeur par défaut de tHb (est) est 15 g/dL.

BB (B)

Base tampon

BB (B) = BE (B) + $41,7 + 0,42 \times tHb$ (est) [mmol/L]

Où tHb (est) peut être saisi par les utilisateurs et la valeur par défaut de tHb (est) est 15 g/dL.

ctCO₂

Gaz carbonique total

 $ctCO_2 = HCO_3 act + 0.0307 \times pCO_2 [mmol/L]$

Ca⁺⁺(7,4)

Concentration de calcium ionisé dans le sang normalisé à un pH de 7,4

 $Ca^{++}(7,4) = Ca^{++} \times 10^{[0,178 \times (pH - 7,40)]} [mmol/L]$

AnGap

Approximation de la différence entre les cations et les anions mesurés dans l'échantillon

 $AnGap = (Na^{+} + K^{+}) - (Cl^{-} + HCO_{3}act) [mmol/L]$

tHb (est)

Estimation de l'hémoglobine contenue dans l'échantillon

tHb (est) = MCHC \times Hct / 100 [g/dL]

Où MCHC correspond à la concentration corpusculaire moyenne en hémoglobine et peut être saisi par les utilisateurs. La valeur par défaut de MCHC est 34 g/dL. L'unité pour l'Hct est %PCV.

sO₂ (est)

Estimation de la saturation en oxygène de l'hémoglobine : rapport entre l'hémoglobine liée à l'oxygène et la quantité totale d'hémoglobine capable de capter l'oxygène

$$sO_{2}(est) = \frac{pO_{2}^{*3} + \alpha \times pO_{2}^{*}}{pO_{2}^{*3} + \alpha \times pO_{2}^{*} + \beta} \times 100$$
 [%]

$pO_2(A-a)$

Différence de pression alvéolaire-artérielle en oxygène

 $pO_2 (A-a) = pO_2 (A) - pO_2 (a) [mmHg]$

$pO_2(a/A)$

Rapport de pression artérielle-alvéolaire en oxygène

 $pO_2 (a/A) = pO_2 (a) / pO_2 (A) [mmHg]$

RI

Indice respiratoire : rapport entre la différence de pression alvéolaire-artérielle en oxygène dans le sang et le pO_2 artériel

$$RI = pO_2(A-a) / pO_2(a)$$

pO_2/FIO_2

Rapport entre le pO2 artériel et la fraction de l'oxygène inspiré

 $pO_2 / FIO_2 = pO_2 / FIO_2 [mmHg]$

pH(**T**)

Valeur de pH corrigée en fonction de la température de patient saisie

 $pH(T) = pH - [0,0147 + 0,0065 \times (pH - 7,4)](T - 37)$

$cH^{+}(T)$

Concentration en ions hydrogène corrigée en fonction de la température de patient saisie

 $cH^{+}(T) = 10^{(9-pH(T))} [nmol/L]$

$pCO_2(T)$

pCO₂ corrigée en fonction de la température de patient saisie

 $pCO_2(T) = pCO_2 \times 10^{0.019(T-37)} [mmHg]$

$pO_2(T)$

 pO_2 corrigé en fonction de la température de patient saisie

$$pO_{2}(T) = pO_{2} \times 10^{\frac{5.49 \times 10^{-11} pO_{2}^{3.88} + 0.071}{9.71 \times 10^{-9} pO_{2}^{3.88} + 2.30}(T-37)}$$
[mmHg]

$pO_2(A-a)(T)$

Différence de pression alvéolaire-artérielle corrigée en fonction de la température de patient saisie

$$pO_2$$
 (A-a) (T) = pO_2 (A) (T) - pO_2 (a) (T) [mmHg]

$pO_2(a/A)(T)$

Rapport de pression artérielle-alvéolaire en oxygène corrigé en fonction de la température de patient saisie

 $pO_2 (a/A) (T) = pO_2 (a) (T) / pO_2 (A) (T) [mmHg]$

RI (T)

Indice respiratoire : rapport entre la différence de pression alvéolaire-artérielle en oxygène dans le sang et le pO_2 artériel lorsque les deux valeurs sont corrigées en fonction de la température du patient

RI (T) = pO_2 (A-a) (T) / pO_2 (a) (T)

$pO_2(T)/FIO_2$

Rapport entre le pO_2 artériel et la fraction de l'oxygène inspirée corrigée en fonction de la température de patient saisie

 $pO_2(T) / FIO_2 = pO_2(T) / FIO_2[mmHg]$

Chapitre 11 Paramètres

11.1 pH

Le pH qui reflète l'état acido-basique d'un patient est le logarithme négatif de la concentration en ions hydrogène.

Il est mesuré par potentiométrie à l'aide d'une électrode de membrane sélective de pH. La concentration en ions hydrogène est déterminée par le potentiel mesuré au moyen de l'équation de Nernst.

Si les résultats du test ne sont pas conformes à l'évaluation clinique, l'échantillon doit être analysé avec une nouvelle cartouche de test.

11.1.1 Utilisation prévue

Le test de pH est destiné à la quantification du pH dans les échantillons de sang total artériel, veineux ou capillaire.

Le pH est un indicateur clinique essentiel pour l'évaluation du déséquilibre acido-basique provoqué par un état pathologique, tel qu'une dysfonction respiratoire et une insuffisance rénale. Les raisons inhérentes à des valeurs de pH sanguin anormales sont énumérées ci-dessous :

- déficit de bicarbonate primaire acidose métabolique
- excès de bicarbonate primaire alcalose métabolique
- hypoventilation primaire acidose respiratoire
- hyperventilation primaire alcalose respiratoire

11.1.2 Traçabilité

Les valeurs de pH attribuées à l'étalon, aux contrôles et aux contrôles de vérification d'étalonnage sont conformes aux étalons NIST.

11.1.3 Correction de la température

Le pH est une quantité dépendante de la température qui est mesurée à 37 °C sur le système. La valeur de pH peut être corrigée à une température de patient différente de 37 °C. La température du patient peut être saisie sur l'écran Entrer les informations patient à chaque test du patient.

La valeur de pH à la température du patient est calculée comme suit :

pH(T) = pH - [0,0147 + 0,0065 (pH - 7,4)] (T - 37)

11.1.4 Caractéristiques de performance

Les expériences sont élaborées conformément aux recommandations suivantes du CLSI : CLSI EP6-A pour les études de linéarité, CLSI EP9-A2 pour les études de comparaison des méthodes et CLSI EP7-A2 pour les études d'interférences. Les données de performance types présentées ci-dessous ont été obtenues auprès de radiologues, d'infirmières, de médecins et de thérapeutes formés à l'utilisation du système et à la méthode comparative.

La répétabilité des contrôles de gaz du sang•électrolytes•métabolites•azote uréique sanguin RNA Medical[®] QC823 a été évaluée à l'aide d'un lot de cartouches de test, et 20 répliques de chaque niveau de contrôle ont été successivement analysées sur un système d'analyse de gazométrie et de biochimie sanguine i15.

Contrôles	Moyenne	SD
Niveau 1	7,161	0,0061
Niveau 2	7,401	0,0104
Niveau 3	7,565	0,0074

Dans le tableau des données de répétabilité ci-dessous, SD désigne l'écart-type.

La précision et la récupération sur les échantillons de sang total ont été évaluées à l'aide de plusieurs échantillons de sang total avec des valeurs de pH couvrant toute la plage de mesure. Dans le tableau ci-dessous, Swr désigne l'écart-type à l'intérieur de la série.

Paramètre	Ν	Attendu	Observé	Swr	Différentiel	% récupér.
	9	7,085	7,110	0,021	0,025	100,4 %
рН	9	7,325	7,357	0,020	0,032	100,4 %
	9	7,581	7,559	0,011	-0,022	99,7 %
	9	7,656	7,673	0,010	0,017	100,2 %

La linéarité a été évaluée à l'aide de matériaux et de méthodes de référence. Trois répliques de chaque niveau de matériaux ont été analysées en parallèle sur l'analyseur de gazométrie et de biochimie sanguine i15 et le système Rapidpoint 400. Les matériaux de référence utilisés étaient les contrôles de vérification d'étalonnage RNA Medical[®] CVC123. Dans le tableau ci-dessous, Sy.x désigne l'erreur type de l'estimation.

Paramètre	Ν	Pente	Interception	Coefficient de corrélation	Sy.x	Plage
рН	15	0,98	0,12	0,99996	0,00397	6,715 - 7,768

Dans l'étude comparative, les échantillons ont été analysés en parallèle sur l'analyseur de gazométrie et de biochimie sanguine i15 et le système Rapidpoint 400. Deux répliques de chaque échantillon ont été analysées sur chaque système.

Paramètre	Ν	Pente	Interception	Coefficient de corrélation	Sy.x	Plage
pН	215	1,0259	-0,1934	0,9919	0,0126	7,137 - 7,720

11.1.5 Substances interférentes

Un échantillon aqueux a été dopé par l'ajout d'une substance potentiellement interférente à la concentration de test suivante pour détecter la présence éventuelle d'interférences. Douze répliques de l'échantillon dopé et de l'échantillon non dopé ont été testées sur deux systèmes d'analyse de gazométrie et de biochimie sanguine i15 avec un lot de cartouches de test. L'interférence a été calculée sur la base de la différence entre la moyenne de l'échantillon dopé et de l'échantillon non dopé.

Les substances suivantes ont été testées et jugées non significatives sur le plan clinique pour la mesure du pH : 24 mmol/L d'hydroxyurée, 1,0 mmol/L de magnésium, 20 mmol/L de lactate, 4,00 mmol/L de salicylate, 37,5 mmol/L de bromure et 20 mmol/L de β -hydroxybutyrate.

REMARQUE:

Il est possible que d'autres substances interfèrent avec la mesure du pH.

11.2 *p*CO₂

 pCO_2 , la pression partielle du gaz carbonique, est mesurée par potentiométrie. pCO_2 est déterminé par le potentiel mesuré au moyen de l'équation de Nernst.

Si les résultats du test ne sont pas conformes à l'évaluation clinique, l'échantillon doit être analysé avec une nouvelle cartouche de test.

11.2.1 Utilisation prévue

Le test de pCO_2 est destiné à la quantification de pCO_2 dans les échantillons de sang total artériel, veineux ou capillaire.

 pCO_2 est un indicateur important pour refléter l'équilibre acido-basique respiratoire. Si pCO_2 se situe au-delà de la plage normale, on parle d'acidose respiratoire. Si pCO_2 se situe en-deçà de la plage normale, on parle d'alcalose respiratoire. Des facteurs métaboliques peuvent également engendrer une augmentation/diminution de pCO_2 : l'acidose métabolique entraîne une diminution de pCO_2 et l'alcalose métabolique provoque une augmentation de pCO_2 . Lorsqu'il est associé à pCO_2 , le pH constitue un outil plus puissant d'évaluation de l'équilibre acido-basique.

11.2.2 Traçabilité

Les valeurs de pCO_2 attribuées à l'étalon, aux contrôles et aux contrôles de vérification d'étalonnage sont conformes aux normes NIST.

11.2.3 Correction de la température

La pCO_2 est une quantité dépendante de la température qui est mesurée à 37 °C sur le système. La valeur de pCO_2 peut être corrigée à une température de patient différente de 37 °C. La température du patient peut être saisie sur l'écran Entrer les informations patient à chaque test du patient.

La valeur de pCO_2 à la température du patient est calculée comme suit :

 $pCO_2(T) = pCO_2 \times 10^{0.019(T-37)}$

11.2.4 Caractéristiques de performance

Les expériences sont élaborées conformément aux recommandations suivantes du CLSI : CLSI EP6-A pour les études de linéarité, CLSI EP9-A2 pour les études de comparaison des méthodes et CLSI EP7-A2 pour les études d'interférences. Les données de performance types présentées ci-dessous ont été obtenues auprès de radiologues, d'infirmières, de médecins et de thérapeutes formés à l'utilisation du système et à la méthode comparative.

La répétabilité des contrôles de gaz du sang•électrolytes•métabolites•azote uréique sanguin RNA Medical[®] QC823 a été évaluée à l'aide d'un lot de cartouches de test, et 20 répliques de chaque niveau ont été successivement analysées sur un analyseur de gazométrie et de biochimie sanguine i15.

Contrôles	Moyenne	SD
Niveau 1	68,63	2,650
Niveau 2	43,97	1,368
Niveau 3	24,41	1,886

Dans le tableau des données de répétabilité ci-dessous, SD désigne l'écart-type.

La précision et la récupération sur les échantillons de sang total ont été évaluées à l'aide de plusieurs échantillons de sang total avec des valeurs de pCO_2 couvrant toute la plage de mesure. Dans le tableau ci-dessous, Swr désigne l'écart-type à l'intérieur de la série.

Paramètre	Ν	Attendu	Observé	Swr	Différentiel	% récupér.
	9	123,2	124,9	4,5	1,7	101,4 %
pCO ₂	9	42,8	42,5	1,2	-0,3	99,3 %
	9	21,3	20,1	1,5	-1,2	94,4 %
	9	10,6	10,0	1,1	-0,6	94,3 %

La linéarité a été évaluée à l'aide de matériaux et de méthodes de référence. Trois répliques de chaque niveau de matériaux ont été analysées en parallèle sur l'analyseur de gazométrie et de biochimie sanguine i15 et le système Rapidpoint 400. Les matériaux de référence utilisés étaient les contrôles de vérification d'étalonnage RNA Medical[®] CVC123. Dans le tableau ci-dessous, Sy.x désigne l'erreur type de l'estimation.

Paramètre	Ν	Pente	Interception	Coefficient de corrélation	Sy.x	Plage
pCO_2	15	1,00	0,22	0,99998	0,215	17,8 - 84,0

Dans l'étude comparative, les échantillons ont été analysés en parallèle sur l'analyseur de gazométrie et de biochimie sanguine i15 et le système Rapidpoint 400. Deux répliques de chaque échantillon ont été analysées sur chaque système.

Paramètre	N	Pente	Interception	Coefficient de corrélation	Sy.x	Plage
pCO ₂	215	0,9394	1,4498	0,9868	1,5950	11,5 - 73,8

11.2.5 Substances interférentes

Un échantillon aqueux a été dopé par l'ajout d'une substance potentiellement interférente à la concentration de test suivante pour détecter la présence éventuelle d'interférences. Douze répliques de l'échantillon dopé et de l'échantillon non dopé ont été testées sur deux systèmes d'analyse de gazométrie et de biochimie sanguine i15 avec un lot de cartouches de test. L'interférence a été calculée sur la base de la différence entre la moyenne de l'échantillon dopé et de l'échantillon non dopé.

Les substances suivantes ont été testées et jugées non significatives sur le plan clinique pour la mesure de pCO_2 : 24 mmol/L d'hydroxyurée, 1,0 mmol/L de magnésium, 20 mmol/L de lactate, 4,00 mmol/L de salicylate, 37,5 mmol/L de bromure et 20 mmol/L de β -hydroxybutyrate.

REMARQUE:

Il est possible que d'autres substances interfèrent avec la mesure de pCO_2 .

11.3 pO₂

 $La pO_2$, la pression partielle de l'oxygène, est mesurée par ampérométrie. Le courant de réduction d'oxygène est proportionnel à la concentration d'oxygène dissous.

Si les résultats du test ne sont pas conformes à l'évaluation clinique, l'échantillon doit être analysé avec une nouvelle cartouche de test.

11.3.1 Utilisation prévue

Le test de pO_2 est destiné à la quantification de pO_2 dans les échantillons de sang total artériel, veineux ou capillaire.

La valeur de pO_2 du sang artériel est essentielle pour évaluer l'efficacité de l'échange gazeux pulmonaire.

11.3.2 Traçabilité

Les valeurs de pO_2 attribuées à l'étalon, aux contrôles et aux contrôles de vérification d'étalonnage sont conformes aux normes NIST.

11.3.3 Correction de la température

La pO_2 est une quantité dépendante de la température qui est mesurée à 37 °C sur le système. La valeur de pO_2 peut être corrigée lorsque la température de patient est différente de 37 °C. La température du patient peut être saisie sur l'écran Entrer les informations patient à chaque test du patient.

La valeur de pO_2 à la température du patient est calculée comme suit :

$$pO_{2}(T) = pO_{2} \times 10^{\frac{5.49 \times 10^{-11} pO_{2}^{3.88} + 0.071}{9.71 \times 10^{-9} pO_{2}^{3.88} + 2.30}(T-37)}$$

11.3.4 Caractéristiques de performance

Les expériences sont élaborées conformément aux recommandations suivantes du CLSI : CLSI EP6-A pour les études de linéarité, CLSI EP9-A2 pour les études de comparaison des méthodes et CLSI EP7-A2 pour les études d'interférences. Les données de performance types présentées ci-dessous ont été obtenues auprès de radiologues, d'infirmières, de médecins et de thérapeutes formés à l'utilisation du système et à la méthode comparative.

La répétabilité des contrôles de gaz du sang•électrolytes•métabolites•azote uréique sanguin RNA Medical[®] QC823 a été évaluée à l'aide d'un lot de cartouches de test, et 20 répliques de chaque niveau ont été successivement analysées sur un analyseur de gazométrie et de biochimie sanguine i15.

Contrôles	Moyenne	SD
Niveau 1	65,3	2,95
Niveau 2	103,0	3,02
Niveau 3	150,8	4,189

Dans le tableau des données de répétabilité ci-dessous, SD désigne l'écart-type.

La précision et la récupération sur les échantillons de sang total ont été évaluées à l'aide de plusieurs échantillons de sang total avec des valeurs de pO_2 couvrant toute la plage de mesure. Dans le tableau ci-dessous, Swr désigne l'écart-type à l'intérieur de la série.

Paramètre	Ν	Attendu	Observé	Swr	Différentiel	% récupér.
nOa	9	21,4	21,7	1,3	0,3	101,4 %
	9	149,7	151,6	3,7	1,9	101,3 %
$P \circ _2$	9	271,8	270,8	8,0	-1,0	99,6 %
	9	422,2	421,7	18,7	-0,5	99,9 %

La linéarité a été évaluée à l'aide de matériaux et de méthodes de référence. Trois répliques de chaque niveau de matériaux ont été analysées en parallèle sur l'analyseur de gazométrie et de biochimie sanguine i15 et le système Rapidpoint 400. Les matériaux de référence utilisés étaient les contrôles de vérification d'étalonnage RNA Medical[®] CVC123. Dans le tableau ci-dessous, Sy.x désigne l'erreur type de l'estimation.

Paramètre	Ζ	Pente	Interception	Coefficient de corrélation	Sy.x	Plage
pO_2	15	0,92	4,51	0,99989	2,58604	39,6 - 448,2

Dans l'étude comparative, les échantillons ont été analysés en parallèle sur l'analyseur de gazométrie et de biochimie sanguine i15 et le système Rapidpoint 400. Deux répliques de chaque échantillon ont été analysées sur chaque système.

Paramètre	N	Pente	Interception	Coefficient de corrélation	Sy.x	Plage
pO_2	215	0,9811	1,3173	0,9986	2,0303	20,4 - 191,0

11.3.5 Substances interférentes

Un échantillon aqueux a été dopé par l'ajout d'une substance potentiellement interférente à la concentration de test suivante pour détecter la présence éventuelle d'interférences. Douze répliques de l'échantillon dopé et de l'échantillon non dopé ont été testées sur deux systèmes d'analyse de gazométrie et de biochimie sanguine i15 avec un lot de cartouches de test. L'interférence a été calculée sur la base de la différence entre la moyenne de l'échantillon dopé et de l'échantillon non dopé.

Les substances suivantes ont été testées et jugées non significatives sur le plan clinique pour la mesure de pO_2 : 24 mmol/L d'hydroxyurée, 1,0 mmol/L de magnésium, 20 mmol/L de lactate, 4,00 mmol/L de salicylate, 37,5 mmol/L de bromure et 20 mmol/L de β -hydroxybutyrate.

REMARQUE :

Il est possible que d'autres substances interfèrent avec la mesure de pO_2 .

11.4 Sodium (Na⁺)

Le sodium est mesuré par potentiométrie à l'aide d'une électrode sélective d'ions. La concentration en ions sodium est déterminée par le potentiel mesuré au moyen de l'équation de Nernst. Le système utilise une méthode (non diluée) directe pour mesurer le sodium, et les valeurs obtenues peuvent différer de celles obtenues par une méthode (diluée) indirecte.

Si les résultats du test ne sont pas conformes à l'évaluation clinique, l'échantillon doit être analysé avec une nouvelle cartouche de test.

11.4.1 Utilisation prévue

Le test de sodium est destiné à la quantification du sodium dans les échantillons de sang total artériel, veineux ou capillaire.

Le sodium est le principal cation de l'espace extracellulaire du corps. Il joue un rôle essentiel dans le maintien de la pression osmotique et l'équilibre acido-basique.

Le contrôle du niveau de sodium dans le sang est fondamental dans le diagnostic ou le suivi de maladies impliquant un déséquilibre électrolytique et toutes les perturbations de l'équilibre hydrique, les insuffisances cardiaques et rénales, etc.

11.4.2 Traçabilité

Les valeurs de concentration en ions sodium attribuées à l'étalon, aux contrôles et aux contrôles de vérification d'étalonnage sont conformes aux normes NIST.

11.4.3 Caractéristiques de performance

Les expériences sont élaborées conformément aux recommandations suivantes du CLSI : CLSI EP6-A pour les études de linéarité, CLSI EP9-A2 pour les études de comparaison des méthodes et CLSI EP7-A2 pour les études d'interférences. Les données de performance types présentées ci-dessous ont été obtenues auprès de radiologues, d'infirmières, de médecins et de thérapeutes formés à l'utilisation du système et à la méthode comparative.

La répétabilité des contrôles de gaz du sang•électrolytes•métabolites•azote uréique sanguin RNA Medical[®] QC823 a été évaluée à l'aide d'un lot de cartouches de test, et 20 répliques de chaque niveau ont été successivement analysées sur un analyseur de gazométrie et de biochimie sanguine i15.

Contrôles	Moyenne	SD
Niveau 1	114,6	0,83
Niveau 2	140,1	0,83
Niveau 3	168,7	0,92

Dans le tableau des données de répétabilité ci-dessous, SD désigne l'écart-type.

La précision et la récupération sur les échantillons de sang total ont été évaluées à l'aide de plusieurs échantillons de sang total avec des valeurs de Na⁺ couvrant toute la plage de mesure. Dans le tableau ci-dessous, Swr désigne l'écart-type à l'intérieur de la série.

Paramètre	Ν	Attendu	Observé	Swr	Différentiel	% récupér.
	9	111,2	111,7	0,7	0,5	100,4 %
Na ⁺	9	140,5	140,8	1,6	0,3	100,2 %
	9	166,0	167,3	3,1	1,3	100,8 %

La linéarité a été évaluée à l'aide de matériaux et de méthodes de référence. Trois répliques de chaque niveau de matériaux ont été analysées en parallèle sur l'analyseur de gazométrie et de biochimie sanguine i15 et le système Rapidpoint 400. Les matériaux de référence utilisés étaient les contrôles de vérification d'étalonnage RNA Medical[®] CVC123. Dans le tableau ci-dessous, Sy.x désigne l'erreur type de l'estimation.

Paramètre	Ν	Pente	Interception	Coefficient de corrélation	Sy.x	Plage
Na ⁺	15	0,98	1,30	0,99999	0,1924	102,6 - 180,3

Dans l'étude comparative, les échantillons ont été analysés en parallèle sur l'analyseur de gazométrie et de biochimie sanguine i15 et le système Rapidpoint 400. Deux répliques de chaque échantillon ont été analysées sur chaque système.

Paramètre	Ν	Pente	Interception	Coefficient de corrélation	Sy.x	Plage
Na^+	215	0,9813	2,3952	0,9961	1,1661	102,3 - 164,9

11.4.4 Substances interférentes

Un échantillon aqueux a été dopé par l'ajout d'une substance potentiellement interférente à la concentration de test suivante pour détecter la présence éventuelle d'interférences. Douze répliques de l'échantillon dopé et de l'échantillon non dopé ont été testées sur deux systèmes d'analyse de gazométrie et de biochimie sanguine i15 avec un lot de cartouches de test. L'interférence a été calculée sur la base de la différence entre la moyenne de l'échantillon dopé et de l'échantillon non dopé.

Les substances qui interfèrent avec la mesure de Na⁺ sont répertoriées ci-dessous :

37,5 mmol/L de bromure augmente les résultats de Na^+ de 5,5 mmol/L.

Les substances suivantes ont été testées et jugées non significatives sur le plan clinique pour la mesure de Na⁺ : 24 mmol/L d'hydroxyurée, 1,0 mmol/L de magnésium, 20 mmol/L de lactate, 4,00 mmol/L de salicylate, 12,5 mmol/L de bromure et 20 mmol/L de β -hydroxybutyrate.

REMARQUE :

Il est possible que d'autres substances interfèrent avec la mesure de Na⁺.

11.5 Potassium (K⁺)

Le potassium est mesuré par potentiométrie à l'aide d'une électrode sélective d'ions. La concentration en ions potassium est déterminée par le potentiel mesuré au moyen de l'équation Nernst. Le système utilise une méthode (non diluée) directe pour mesurer le potassium et les valeurs obtenues peuvent différer de celles obtenues par une méthode (diluée) indirecte.

Si les résultats du test ne sont pas conformes à l'évaluation clinique, l'échantillon doit être analysé avec une nouvelle cartouche de test.

11.5.1 Utilisation prévue

Le test de potassium est destiné à la quantification du potassium dans les échantillons de sang total artériel, veineux ou capillaire.

Le potassium est le cation le plus abondant dans le liquide intracellulaire, et il joue un rôle majeur dans la conduction nerveuse et la fonction musculaire. Il contribue également au maintien de l'équilibre acido-basique et de la pression osmotique.

La valeur de potassium est importante pour les patients soumis à des traitements par perfusion, atteints d'insuffisance cardiaque, etc.

11.5.2 Traçabilité

Les valeurs de concentration en ions potassium attribuées à l'étalon, aux contrôles et aux contrôles de vérification d'étalonnage sont conformes aux normes NIST.

11.5.3 Caractéristiques de performance

Les expériences sont élaborées conformément aux recommandations suivantes du CLSI : CLSI EP6-A pour les études de linéarité, CLSI EP9-A2 pour les études de comparaison des méthodes et CLSI EP7-A2 pour les études d'interférences. Les données de performance types présentées ci-dessous ont été obtenues auprès de radiologues, d'infirmières, de médecins et de thérapeutes formés à l'utilisation du système et à la méthode comparative.

La répétabilité des contrôles de gaz du sang•électrolytes•métabolites•azote uréique sanguin RNA Medical[®] QC823 a été évaluée à l'aide d'un lot de cartouches de test, et 20 répliques de chaque niveau ont été successivement analysées sur un analyseur de gazométrie et de biochimie sanguine i15.

Contrôles	Moyenne	SD
Niveau 1	1,92	0,014
Niveau 2	4,51	0,041
Niveau 3	6,70	0,047

Dans le tableau des données de répétabilité ci-dessous, SD désigne l'écart-type.

La précision et la récupération sur les échantillons de sang total ont été évaluées à l'aide de plusieurs échantillons de sang total avec des valeurs de K^+ couvrant toute la plage de mesure. Dans le tableau ci-dessous, Swr désigne l'écart-type à l'intérieur de la série.

Paramètre	Ν	Attendu	Observé	Swr	Différentiel	% récupér.
	9	3,40	3,35	0,04	-0,05	98,5 %
K^+	9	4,00	4,01	0,03	0,01	100,3 %
	9	9,37	9,36	0,20	-0,01	99,9 %

La linéarité a été évaluée à l'aide de matériaux et de méthodes de référence. Trois répliques de chaque niveau de matériaux ont été analysées en parallèle sur l'analyseur de gazométrie et de biochimie sanguine i15 et le système Rapidpoint 400. Les matériaux de référence utilisés étaient les contrôles de vérification d'étalonnage RNA Medical[®] CVC123. Dans le tableau ci-dessous, Sy.x désigne l'erreur type de l'estimation.

Paramètre	Ν	Pente	Interception	Coefficient de corrélation	Sy.x	Plage
K^+	15	1,0	-0,04	0,99997	0,03787	1,82 - 12,09

Dans l'étude comparative, les échantillons ont été analysés en parallèle sur l'analyseur de gazométrie et de biochimie sanguine i15 et le système Rapidpoint 400. Deux répliques de chaque échantillon ont été analysées sur chaque système.

Paramètre	N	Pente	Interception	Coefficient de corrélation	Sy.x	Plage
\mathbf{K}^+	215	1,0068	-0,0409	0,9983	0,0594	2,55 - 6,70

11.5.4 Substances interférentes

Un échantillon aqueux a été dopé par l'ajout d'une substance potentiellement interférente à la concentration de test suivante pour détecter la présence éventuelle d'interférences. Douze répliques de l'échantillon dopé et de l'échantillon non dopé ont été testées sur deux systèmes d'analyse de gazométrie et de biochimie sanguine i15 avec un lot de cartouches de test. L'interférence a été calculée sur la base de la différence entre la moyenne de l'échantillon dopé et de l'échantillon non dopé.

Les substances suivantes ont été testées et jugées non significatives sur le plan clinique pour la mesure de K⁺: 24 mmol/L d'hydroxyurée, 1,0 mmol/L de magnésium, 20 mmol/L de lactate, 4,00 mmol/L de salicylate, 37,5 mmol/L de bromure et 20 mmol/L de β -hydroxybutyrate.

REMARQUE :

Il est possible que d'autres substances interfèrent avec la mesure de K⁺.

11.6 Calcium ionisé (Ca⁺⁺)

Le calcium ionisé (Ca⁺⁺) est mesuré par potentiométrie à l'aide d'une électrode sélective d'ions. La concentration de calcium ionisé est déterminée par le potentiel mesuré au moyen de l'équation de Nernst.

Si les résultats du test ne sont pas conformes à l'évaluation clinique, l'échantillon doit être analysé avec une nouvelle cartouche de test.

11.6.1 Utilisation prévue

Le test de calcium ionisé est destiné à la quantification du calcium ionisé dans les échantillons de sang total artériel, veineux et capillaire.

Ca⁺⁺, la forme de calcium physiologiquement active, joue un rôle essentiel dans la contraction musculaire, la transmission de l'influx nerveux et les fonctions cardiaques.

Pour les patients au pronostic vital engagé, notamment ceux qui nécessitent des transfusions importantes, le niveau de Ca⁺⁺ doit être surveillé de près.

11.6.2 Traçabilité

Les valeurs de concentration de calcium ionisé attribuées à l'étalon, aux contrôles et aux contrôles de vérification d'étalonnage sont conformes aux normes NIST.

11.6.3 Caractéristiques de performance

Les expériences sont élaborées conformément aux recommandations suivantes du CLSI : CLSI EP6-A pour les études de linéarité, CLSI EP9-A2 pour les études de comparaison des méthodes et CLSI EP7-A2 pour les études d'interférences. Les données de performance types présentées ci-dessous ont été obtenues auprès de radiologues, d'infirmières, de médecins et de thérapeutes formés à l'utilisation du système et à la méthode comparative.

La répétabilité des contrôles de gaz du sang•électrolytes•métabolites•azote uréique sanguin RNA Medical[®] QC823 a été évaluée à l'aide d'un lot de cartouches de test, et 20 répliques de chaque niveau ont été successivement analysées sur un analyseur de gazométrie et de biochimie sanguine i15.

Contrôles	Moyenne	SD
Niveau 1	1,47	0,029
Niveau 2	1,16	0,026
Niveau 3	0,46	0,009

Dans le tableau des données de répétabilité ci-dessous, SD désigne l'écart-type.

La précision et la récupération sur les échantillons de sang total ont été évaluées à l'aide de plusieurs échantillons de sang total avec des valeurs de Ca^{++} couvrant toute la plage de mesure. Dans le tableau ci-dessous, Swr désigne l'écart-type à l'intérieur de la série.

Paramètre	Ν	Attendu	Observé	Swr	Différentiel	% récupér.
	9	1,05	1,05	0,03	0,00	100,0 %
Ca ⁺⁺	9	1,21	1,20	0,01	-0,01	99,2 %
	9	2,68	2,68	0,07	0,00	100,0 %

La linéarité a été évaluée à l'aide de matériaux et de méthodes de référence. Trois répliques de chaque niveau de matériaux ont été analysées en parallèle sur l'analyseur de gazométrie et de biochimie sanguine i15 et le système Rapidpoint 400. Les matériaux de référence utilisés étaient les contrôles de vérification d'étalonnage RNA Medical[®] CVC123. Dans le tableau ci-dessous, Sy.x désigne l'erreur type de l'estimation.

Paramètre	Ν	Pente	Interception	Coefficient de corrélation	Sy.x	Plage
Ca ⁺⁺	15	0,98	0,37	0,99998	0,00972	0,15 - 3,74

Dans l'étude comparative, les échantillons ont été analysés en parallèle sur l'analyseur de gazométrie et de biochimie sanguine i15 et le système Rapidpoint 400. Deux répliques de chaque échantillon ont été analysées sur chaque système.

Paramètre	Ν	Pente	Interception	Coefficient de corrélation	Sy.x	Plage
Ca ⁺⁺	215	0,9987	0,0019	0,9910	0,0265	0,61 - 1,73

11.6.4 Substances interférentes

Un échantillon aqueux a été dopé par l'ajout d'une substance potentiellement interférente à la concentration de test suivante pour détecter la présence éventuelle d'interférences. Douze répliques de l'échantillon dopé et de l'échantillon non dopé ont été testées sur deux systèmes d'analyse de gazométrie et de biochimie sanguine i15 avec un lot de cartouches de test. L'interférence a été calculée sur la base de la différence entre la moyenne de l'échantillon dopé et de l'échantillon non dopé.

Les substances qui interfèrent avec la mesure de Ca⁺⁺ sont répertoriées ci-dessous :

- > 12,5 mmol/L de bromure augmente les résultats de Ca^{++} de 0,07 mmol/L.
- > 37,5 mmol/L de bromure augmente les résultats de Ca^{++} de 0,17 mmol/L.

Les substances suivantes ont été testées et jugées non significatives sur le plan clinique pour la mesure de Ca⁺⁺ : 24 mmol/L d' hydroxyurée, 1,0 mmol/L de magnésium, 20 mmol/L de lactate, 4,00 mmol/L de salicylate et 20 mmol/L de β -hydroxybutyrate.

REMARQUE :

Il est possible que d'autres substances interfèrent avec la mesure de Ca⁺⁺.

11.7 Chlorure (Cl⁻)

Le chlorure est mesuré par potentiométrie à l'aide d'une électrode sélective d'ions. La concentration en ions chlorure est déterminée par le potentiel mesuré au moyen de l'équation de Nernst. Le système utilise une méthode (non diluée) directe pour mesurer le chlorure, et les valeurs obtenues peuvent différer de celles obtenues par une méthode (diluée) indirecte.

Si les résultats du test ne sont pas conformes à l'évaluation clinique, l'échantillon doit être analysé avec une nouvelle cartouche de test.

11.7.1 Utilisation prévue

Le test de chlorure est destiné à la quantification du chlorure dans les échantillons de sang total artériel, veineux ou capillaire.

Cl⁻, le principal anion de l'espace extracellulaire du corps, joue un rôle majeur dans la régulation de l'équilibre acido-basique et régule la pression osmotique conjointement avec Na⁺.

La surveillance de la valeur de Cl⁻ est fondamentale pour les patients atteints d'hypertension, d'insuffisance cardiaque, etc.

11.7.2 Traçabilité

Les valeurs de concentration en ions chlorure attribuées à l'étalon, aux contrôles et aux contrôles de vérification d'étalonnage sont conformes aux normes NIST.

11.7.3 Caractéristiques de performance

Les expériences sont élaborées conformément aux recommandations suivantes du CLSI : CLSI EP6-A pour les études de linéarité, CLSI EP9-A2 pour les études de comparaison des méthodes et CLSI EP7-A2 pour les études d'interférences. Les données de performance types présentées ci-dessous ont été obtenues auprès de radiologues, d'infirmières, de médecins et de thérapeutes formés à l'utilisation du système et à la méthode comparative.

La répétabilité des contrôles de gaz du sang•électrolytes•métabolites•azote uréique sanguin RNA Medical[®] QC823 a été évaluée à l'aide d'un lot de cartouches de test, et 20 répliques de chaque niveau ont été successivement analysées sur un analyseur de gazométrie et de biochimie sanguine i15.

Contrôles	Moyenne	SD
Niveau 1	78,8	0,62
Niveau 2	96,7	0,84
Niveau 3	127,1	0,76

Dans le tableau des données de répétabilité ci-dessous, SD désigne l'écart-type.

La précision et la récupération sur les échantillons de sang total ont été évaluées à l'aide de plusieurs échantillons de sang total avec des valeurs Cl couvrant toute la plage de mesures. Dans le tableau ci-dessous, Swr désigne l'écart-type à l'intérieur de la série.

Paramètre	Ν	Attendu	Observé	Swr	Différentiel	% récupér.
	9	80,0	80,0	0,3	0,0	100,0 %
Cl	9	106,5	106,6	1,3	0,1	100,1 %
	9	133,0	133,0	1,8	0,0	100,0 %

La linéarité a été évaluée à l'aide de matériaux et de méthodes de référence. Trois répliques de chaque niveau de matériaux ont été analysées en parallèle sur l'analyseur de gazométrie et de biochimie sanguine i15 et le système Rapidpoint 400. Les matériaux de référence utilisés étaient les contrôles de vérification d'étalonnage RNA Medical[®] CVC123. Dans le tableau ci-dessous, Sy.x désigne l'erreur type de l'estimation.

Paramètre	Ν	Pente	Interception	Coefficient de corrélation	Sy.x	Plage
Cl	15	0,98	0,37	0,99998	0,2404	72 - 146

Dans l'étude comparative, les échantillons ont été analysés en parallèle sur l'analyseur de gazométrie et de biochimie sanguine i15 et le système Rapidpoint 400. Deux répliques de chaque échantillon ont été analysées sur chaque système.

Paramètre	Ν	Pente	Interception	Coefficient de corrélation	Sy.x	Plage
Cl	215	0,9955	0,2967	0,9961	0,9802	77 - 132

11.7.4 Substances interférentes

Un échantillon aqueux a été dopé par l'ajout d'une substance potentiellement interférente à la concentration de test suivante pour détecter la présence éventuelle d'interférences. Douze répliques de l'échantillon dopé et de l'échantillon non dopé ont été testées sur deux systèmes d'analyse de gazométrie et de biochimie sanguine i15 avec un lot de cartouches de test. L'interférence a été calculée sur la base de la différence entre la moyenne de l'échantillon dopé et de l'échantillon non dopé.

Les substances interférant avec la mesure du Cl⁻ sont répertoriées ci-dessous :

- ▶ 12,5 mmol/L de bromure augmente les résultats de Cl⁻ de 15,5 mmol/L.
- ➤ 4,00 mmol/L de salicylate augmente les résultats de Cl⁻ de 15,0 mmol/L.

Les substances suivantes ont été testées et jugées non significatives sur le plan clinique pour la mesure de Cl⁻ : 24 mmol/L d'hydroxyurée, 1,0 mmol/L de magnésium, 20 mmol/L de lactate et 20 mmol/L de β -hydroxybutyrate.

REMARQUE:

Il est possible que d'autres substances interfèrent avec la mesure de Cl⁻.

11.8 Hématocrite (Hct)

L'hématocrite est une mesure du volume occupé par les globules rouges dans les échantillons de sang total. L'hématocrite est déterminée par conductimétrie à l'aide de deux électrodes en or. La conductance de l'échantillon de sang est inversement liée à la valeur d'hématocrite.

Si les résultats du test ne sont pas conformes à l'évaluation clinique, l'échantillon doit être analysé avec une nouvelle cartouche de test.

11.8.1 Utilisation prévue

Le test d'hématocrite est destiné à la quantification de l'hématocrite dans les échantillons de sang total artériel, veineux ou capillaire.

L'hématocrite est un indicateur utile pour l'évaluation des états du volume sanguin, tels que l'anémie et l'erythrocytose.

11.8.2 Traçabilité

Les valeurs d'hématocrite attribuées aux contrôles et aux contrôles de vérification d'étalonnage sont conformes à la méthode suivante : procédure CLSI H7-A3 pour la mesure du volume de globules concentrés à l'aide de la méthode du micro-hématocrite.

11.8.3 Caractéristiques de performance

Les expériences sont élaborées conformément aux recommandations suivantes du CLSI : CLSI EP6-A pour les études de linéarité, CLSI EP9-A2 pour les études de comparaison des méthodes et CLSI EP7-A2 pour les études d'interférences. Les données de performance types présentées ci-dessous ont été obtenues auprès de radiologues, d'infirmières, de médecins et de thérapeutes formés à l'utilisation du système et à la méthode comparative.

La répétabilité des contrôles d'hématocrite RNA Medical[®] QC900 a été évaluée à l'aide d'un lot de cartouches de test, et 20 répliques de chaque niveau ont été successivement analysées sur un analyseur de gazométrie et de biochimie sanguine i15.

Contrôles	Moyenne	SD
Bas	20,3	0,93
Elevée	49,7	0,47

Dans le tableau des données de répétabilité ci-dessous, SD désigne l'écart-type.

La précision et la récupération sur les échantillons de sang total ont été évaluées à l'aide de plusieurs échantillons de sang total avec des valeurs Hct couvrant toute la plage de mesures. Dans le tableau ci-dessous, Swr désigne l'écart-type à l'intérieur de la série.

Paramètre	Ν	Attendu	Observé	Swr	Différentiel	% récupér.
	9	25,5	26,2	0,5	0,7	102,7 %
Hct	9	44,0	44,6	0,9	0,6	101,4 %
	9	64,0	62,5	1,5	-1,5	97,7 %

La linéarité a été évaluée à l'aide de matériaux et de méthodes de référence. Trois répliques de chaque niveau de matériaux ont été analysées en parallèle sur l'analyseur de gazométrie et de biochimie sanguine i15 et le système Rapidpoint 400. Les matériaux de référence utilisés étaient les contrôles de vérification d'étalonnage de l'hématocrite RNA Medical[®] CVC 9005. Dans le tableau ci-dessous, Sy.x désigne l'erreur type de l'estimation.

Paramètre	Ν	Pente	Interception	Coefficient de corrélation	Sy.x	Plage
Hct	15	0,99	0,56	0,99988	0,34811	15,0 - 62,0
Dans l'étude comparative, les échantillons ont été analysés en parallèle sur l'analyseur de gazométrie et de biochimie sanguine i15 et le système Rapidpoint 400. Deux répliques de chaque échantillon ont été analysées sur chaque système.

Paramètre	Ν	Pente	Interception	Coefficient de corrélation	Sy.x	Plage
Hct	215	0,9729	1,0199	0,9932	0,7518	23 - 53

11.8.4 Substances interférentes

Les substances interférant avec la mesure de l'hématocrite sont répertoriées ci-dessous :

- Une augmentation significative du nombre de globules blancs peut entraîner une augmentation des résultats de l'hématocrite.
- > Une augmentation du niveau total de protéines augmente les résultats de l'hématocrite.
- > Un taux anormalement élevé de lipides peut augmenter les résultats de l'hématocrite.
- Des facteurs interférant avec les résultats de sodium interfèrent également avec les résultats de l'hématocrite.

REMARQUE:

Il est possible que d'autres substances interfèrent avec la mesure de l'hématocrite.

Chapitre 12 Garantie et service après-vente

12.1 Garantie

EDAN garantit que les produits EDAN répondent aux spécifications d'utilisation des produits et sont exempts de vices matériels et de vices de fabrication pendant la période de garantie.

La garantie n'est pas valide dans les cas suivants :

- a) Dommage causé par une manipulation sans précaution lors de l'expédition.
- b) Dommage consécutif causé par une utilisation ou une maintenance inappropriée.
- c) Dommage causé par une modification ou une réparation effectuée par une personne non agréée par EDAN.
- d) Dommage causé par des accidents.
- e) Remplacement ou retrait de l'étiquette de numéro de série et de l'étiquette du fabricant.

Si un produit couvert par cette garantie est jugé défectueux en raison d'un défaut matériel, de fabrication ou au niveau des composants, et que la réclamation au titre de la garantie est effectuée pendant la période de garantie, EDAN réparera ou remplacera gratuitement, à sa discrétion, les pièces défectueuses. EDAN ne fournira pas d'appareil de remplacement pendant la réparation du produit défectueux.

12.2 Coordonnées

Pour toute question sur la maintenance, les caractéristiques techniques ou un dysfonctionnement du matériel, contactez le distributeur local.

Vous pouvez également envoyer un courrier électronique au service Maintenance EDAN, à l'adresse suivante : support@edan.com.cn.

Annexe 1 Caractéristiques techniques

A1.1 Conditions environnementales

		Température 10 - 31 °C	
Analyseur de gazométrie et	Utilisation	Humidité	25 - 80 % (sans condensation)
	Ounsation	Pression ambiante	70 - 106,6 kPa (525 - 800 mmHg)
de biochimie		Température	-20 - 60 °C
sanguine	Transport et	Humidité	25 - 93 % (sans condensation)
	stockage	Pression ambiante	40 - 106,6 kPa (300 - 800 mmHg)
		Température	10 - 31 °C
	Utilisation	Humidité	25 - 80 % (sans condensation)
	Ounsation	Pression ambiante	70 - 106,6 kPa (525 - 800 mmHg)
		Température	4 - 37 °C
Cartouche	Transport	Humidité	\leq 93 % (sans condensation)
de test		Pression ambiante	40 - 106,6 kPa (300 - 800 mmHg)
	Stackage	Température	4 - 30 °C
		Humidité	\leq 93 % (sans condensation)
	Slockage	Pression ambiante	40 - 106,6 kPa (300 - 800 mmHg)
		Température	10 - 31 °C
Pack de solutions étalons	Iltiliantion	Humidité	25 - 80 % (sans condensation)
	Ounsation	Pression ambiante	70 - 106,6 kPa (525 - 800 mmHg)
		Température	2 - 8 °C (éviter le gel)
	Transport et	Humidité	\leq 93 % (sans condensation)
	stockage	Pression ambiante	65 - 106,6 kPa (489 - 800 mmHg)

A1.2 Caractéristiques techniques de l'analyseur

Dimensions	315*238*153 mm (longueur x largeur x hauteur)		
Poids	3,8 kg (batterie rechargeable incluse, adaptateur non inclus)		
Ecran LCD	7 pouces, 800*480, TFT couleur		
	Tension	100 - 240 V~	
	Courant d'entrée	1,2 - 0,5 A	
Interrupteur d'alimentation	Fréquence	50 Hz/60 Hz	
	Batterie rechargeable	14,8 V.c.c/4 200 mAh	
Interface USB	4 interfaces USB		
Port série	DB9		
Scanner de code-barres	intégré		

A1.3 Caractéristiques de performance

Volume d'échantillon	110 μL
Durée du test	L'affichage des résultats du test ne nécessite que 70 s à compter de
	l'échantillonnage.

A1.4 Imprimante

Imprimante	Imprimante thermique intégrée, papier à imprimante thermique
Largeur du papier	48 mm

A1.5 Batterie rechargeable

Туре	Batterie au lithium rechargeable
Durée de fonctionnement	Lorsque la batterie est entièrement chargée, le système peut analyser et imprimer 50 échantillons.
Temps de charge de la batterie	Pas plus de 8 heures
Capacité nominale	4 200 mAh
Tension nominale	14,8 V
Mode de charge	Tension/courant constants

Courant de charge (standard)	0,2C5A		
Température de charge	0 °C - +50 °C (+32 °F - +122 °F)		
Température de fonctionnement	-20 °C - +60 °C (-4 °F - +140 °F)		
Stockage	Court terme (moins d'un mois) : -20 °C - +60 °C (-4 °F - +140 °F) Moyen terme (moins de 3 mois) : -20 °C - +45 °C (-4 °F - +113 °F) Long terme (moins d'un an) : -20 °C - +20 °C (-4 °F - +68 °F) Pendant la phase de stockage, rechargez la batterie au moins tous les six mois.		
Cycle de vie	\geq 300 fois		

A1.6 Consignes de sécurité

Conforme aux normes suivantes	EN 61010-1: 2001, EN 61010-2-101: 2002, EN 61326-1: 2006, EN 61326-2-6: 2006
Degré de protection contre les infiltrations d'eau	Equipement ordinaire (équipement fermé mais non étanche)
Degré de sécurité en présence de gaz inflammables	Equipement inadapté à une utilisation en présence de gaz inflammables
CEM	CISPR 11 Groupe 1, Classe A
Mode de fonctionnement	Continu

Annexe 2 Plages de mesure

A2.1 Plages de mesure pour les paramètres mesurés

Paramètre	Plage de mesures
pН	6,500 - 8,000
pO_2	10 - 700 mmHg
pCO_2	10 - 150 mmHg
K^+	2,0 - 9,0 mmol/L
Na^+	100 - 180 mmol/L
Cl	65 - 140 mmol/L
Ca ⁺⁺	0,25 - 2,50 mmol/L
Het	PCV 10 - 75 %

A2.2 Plages de mesure pour les paramètres calculés

Paramètre	Plage de mesures
cH^+	10,0 - 316,2 nmol/L
$cH^+(T)$	10,0 - 316,2 nmol/L
pH(T)	6,500 - 8,000
$pCO_2(T)$	10,0 - 150,0 mmHg
$pO_2(T)$	10 - 700 mmHg
HCO ₃ -act	1,0 - 99,9 mmol/L
HCO ₃ -std	1,0 - 99,9 mmol/L
BB(B)	13,1 - 82,4 mmol/L
BE(B)	(-30,0) - (+30,0) mmol/L
BE(ecf)	(-30,0) - (+30,0) mmol/L
ctCO ₂	1 - 100 mmol/L
Ca ⁺⁺ (7,4)	0,23 - 2,70 mmol/L
sO ₂ (est)	1 % - 100 %
AnGap	(-10) - (+99) mmol/L
tHb(est)	3,4 - 25,5 g/dL
$pO_2(A-a)$	0 - 733 mmHg
$pO_2(A-a)(T)$	0 - 733 mmHg
$pO_2(a/A)$	0,00 - 1,00
$pO_2(a/A)(T)$	0,00 - 1,00
RI	0,00 - 20,00
RI(T)	0,00 - 20,00
pO_2/FIO_2	250 - 700 mmHg
$pO_2(T)/FIO_2$	250 - 700 mmHg

Annexe 3 Plages de référence

REMARQUE:

Les plages de référence pouvant varier selon des facteurs démographiques tels que l'âge, le sexe et les antécédents. Il est recommandé de définir les plages de référence en fonction de la population testée. Les plages de référence suivantes sont fournies à titre de référence uniquement.

Danamaktua	Plage de référence			
Parametre	Pression artérielle	Pression veineuse		
pН	7,35 - 7,45	7,31 - 7,41		
<i>p</i> O ₂ (mmHg)	80 - 105	35 - 40		
<i>p</i> CO ₂ (mmHg)	35 - 45	41 - 51		
Na ⁺ (mmol/L)	138 - 146	138 - 146		
K ⁺ (mmol/L)	3,5 - 4,9	3,5 - 4,9		
Cl ⁻ (mmol/L)	98 - 109	98 - 109		
Ca ⁺⁺ (mmol/L)	1,12 - 1,32	1,12 - 1,32		
Hct (%)	38 - 51	38 - 51		

Annexe 4 Informations relatives à la compatibilité électromagnétique

Directives et déclaration du fabricant - Emissions électromagnétiques -Pour l'ensemble des EQUIPEMENTS et SYSTEMES

Directives et déclaration du fabricant - Emissions électromagnétiques			
Le moniteur est conçu pour être utilisé dans l'environnement électromagnétique spécifié ci-dessous. L'utilisateur du système doit s'assurer qu'il est utilisé dans un tel environnement.			
Test des émissions Conformité		Environnement électromagnétique - Directives	
Emissions RF CISPR 11	Groupe 1	Le système utilise une énergie à haute fréquence pour son fonctionnement interne uniquement. Par conséquent, ses émissions RF sont très faibles et ne sont pas susceptibles de provoquer des interférences avec les appareils électroniques se trouvant à proximité.	
Emissions RF CISPR 11	Classe A		
Emissions harmoniques CEI 61000-3-2	Classe A	Le système peut être utilisé dans tous les établissements autres que domestiques et autres que ceux directement reliés aux réseaux publics d'alimentation basse tension	
Fluctuations de tension/Flicker CEI 61000-3-3	Conforme	pour les bâtiments à usage domestique.	

Directives et déclaration du fabricant - Immunité électromagnétique -Pour l'ensemble des EQUIPEMENTS et SYSTEMES

Directives et déclar	Directives et déclaration du fabricant - Immunité électromagnétique				
Le système est con	çu pour être utilisé dans	s l'environnement électro	omagnétique spécifié ci-dessous.		
Il incombe à l'acqu	éreur ou à l'utilisateur d	u système de s'assurer q	ue celui-ci est utilisé dans un tel		
environnement.	Niterra en el e de ed		F		
Test d'immunité	CEI 61326-1 et 61326-2-6	Niveau de conformité	Environnement électromagnétique - Directives		
Décharges électrostatiques (DES) CEI 61000-4-2	± 4 kV au contact ± 8 kV à l'air	± 4 kV au contact ± 8 kV à l'air	Les sols doivent présenter un revêtement en bois, en béton ou en carreaux de céramique. Si le sol est recouvert de matériaux synthétiques, l'humidité relative doit être d'au moins 30 %.		
Transitoires électriques rapides en salves CEI 61000-4-4	± 1 kV pour les lignes d'alimentation électrique	± 1 kV pour les lignes d'alimentation électrique	La qualité de l'alimentation secteur doit être celle d'un environnement commercial ou hospitalier type.		
Surtension CEI 61000-4-5	 ± 1 kV de ligne à ligne ± 2 kV de la ligne à la terre 	 ± 1 kV de ligne à ligne ± 2 kV de la ligne à la terre 	La qualité de l'alimentation secteur doit être celle d'un environnement commercial ou hospitalier type.		
Champ magnétique de la fréquence d'alimentation (50 Hz/60 Hz) CEI 61000-4-8	3 A/m	3 A/m	Les champs magnétiques de la fréquence d'alimentation doivent se maintenir à des niveaux caractéristiques d'un site courant fonctionnant au sein d'un environnement commercial ou hospitalier type.		
Chutes de tension, brèves interruptions et variations de tension sur les lignes d'entrée de l'alimentation électrique CEI 61000-4-11	0 % UT (chute 100 % en UT) pour 1 cycle 40 % UT (chute de 60 % en UT) pour 5/6 cycles 70 % UT (chute de 30 % en UT) pour 25/30 cycles < 5 % UT (chute > 95 % en UT) pour 250/300 cycles	0 % UT (chute 100 % en UT) pour 1 cycle 40 % UT (chute de 60 % en UT) pour 5/6 cycles 70 % UT (chute de 30 % en UT) pour 25/30 cycles < 5 % UT (chute > 95 % en UT) pour 250/300 cycles	La qualité de l'alimentation secteur doit être celle d'un environnement commercial ou hospitalier type. Si le fonctionnement du système doit être maintenu pendant les interruptions de l'alimentation secteur, il est recommandé d'utiliser une alimentation sans interruption ou une batterie.		

٦

Conseils et déclaration du fabricant - Immunité électromagnétique -Pour les EQUIPEMENTS et SYSTEMES qui ne constituent pas de moyens d'ASSISTANCE VITALE

Directives et déc	claration du fabric	ant - Immunité	électromagnétique
Le système es	st conçu pour ê	tre utilisé da	ns l'environnement électromagnétique spécifié
ci-dessous. Il ir	ncombe à l'acqué	reur ou à l'util	isateur du système de s'assurer que celui-ci est
utilisé dans un te	el environnement.		l
Test	Niveau de test	Niveau de	Environnement électromagnétique -
d'immunité	CEI 61326	conformité	Directives
RF conduite CEI 61000-4-6	3 Vrms 150 kHz à 80 MHz	3 Vrms	Les équipements de communications RF portables et mobiles ne doivent être utilisés à proximité d'aucun composant du système (câbles compris) à une distance inférieure à celle recommandée, calculée à partir de l'équation applicable à la fréquence de l'émetteur.
			Distance de séparation recommandée
RF rayonnée CEI 61000-4-3	3 V/m 80 MHz à 2,5 GHz	3 V/m	$d = \begin{bmatrix} \frac{3.5}{V_1} \end{bmatrix} \sqrt{P}$ $d = \begin{bmatrix} \frac{3.5}{E_1} \end{bmatrix} \sqrt{P} 80 \text{ MHz à 800 MHz}$ $d = \begin{bmatrix} \frac{7}{E_1} \end{bmatrix} \sqrt{P} 800 \text{ MHz à 2,5 GHz}$ où <i>P</i> est la puissance de sortie maximale de l'émetteur en watts (W) selon les informations données par le fabricant, et <i>d</i> la distance de séparation recommandée en mètres (m). Les intensités de champ des émetteurs RF fixes, déterminées par une étude électromagnétique du site, ^a doivent être inférieures au niveau de conformité dans chaque plage de fréquence. ^b Des interférences peuvent se produire à proximité d'un équipement marqué du symbole suivant : ((c))

REMARQUE 1 : à 80 et 800 MHz, la plage de fréquences la plus élevée s'applique. **REMARQUE 2 :** ces directives ne s'appliquent pas forcément à toutes les situations. La propagation électromagnétique dépend de l'absorption et de la réflexion des structures, des objets et des personnes.

^a Les intensités des champs émis par les équipements fixes, tels que les émetteurs des stations de base de radiotéléphones (portables/sans fil) et les radios mobiles terrestres, les radios amateurs, les émissions de radio FM et AM et les émissions de TV ne peuvent pas être déterminées avec précision. Afin d'évaluer l'environnement électromagnétique dû aux émetteurs RF fixes, une étude électromagnétique du site doit être envisagée. Si l'intensité de champ mesurée sur le site d'utilisation du système dépasse le niveau de conformité RF applicable indiqué ci-dessus, il est recommandé de surveiller le fonctionnement du système pour s'assurer qu'il est correct. Si des anomalies sont constatées, des mesures supplémentaires pourront s'avérer nécessaires, comme la réorientation ou le déplacement du système.

^b Au-delà de la plage de fréquences comprise entre 150 kHz et 80 MHz, les intensités doivent être inférieures à 3 V/m.

Distance de séparation recommandée entre l'équipement de communication RF portable et mobile et l'EQUIPEMENT OU LE SYSTEME - Pour les EQUIPEMENTS et SYSTEMES ne constituant pas de moyens d'ASSISTANCE VITALE

Distances de séparation recommandées entre l'équipement de communication RF portable et mobile et le système

Le système est conçu pour être utilisé dans un environnement électromagnétique dans lequel les perturbations RF rayonnées sont contrôlées. L'acquéreur ou l'utilisateur du système peut contribuer à prévenir les perturbations électromagnétiques en maintenant une distance minimale entre les dispositifs radioélectriques (émetteurs) portables ou mobiles et le système conformément aux recommandations ci-dessous, en fonction de la puissance de sortie maximale de l'équipement de communication.

Puissance de	Distance de séparation en fonction de la fréquence de l'émetteur (m)				
sortie maximale nominale de	150 kHz à 80 MHz	80 MHz à 800 MHz	800 MHz à 2,5 GHz		
l'émetteur (W)	$d = \left[\frac{3,5}{V_1}\right]\sqrt{P}$	$d = \left[\frac{3,5}{E_1}\right]\sqrt{P}$	$d = \left[\frac{7}{E_1}\right]\sqrt{P}$		
0,01	0,12	0,12	0,23		
0,1	0,38	0,38	0,73		
1	1,2	1,2	2,3		
10	3,8	3,8	7,3		
100	12	12	23		

Dans le cas des émetteurs dont la puissance de sortie maximale nominale n'est pas répertoriée ici, la distance de séparation recommandée d en mètres (m) peut être déterminée à l'aide de l'équation applicable à la fréquence de l'émetteur, où P est la puissance de sortie maximale nominale de l'émetteur en watts (W) telle qu'indiquée par le fabricant de l'émetteur.

REMARQUE 1 : à 80 et 800 MHz, la distance de séparation pour la plage de fréquences la plus élevée s'applique.

REMARQUE 2 : ces directives ne s'appliquent pas forcément à toutes les situations. La propagation électromagnétique dépend de l'absorption et de la réflexion des structures, des objets et des personnes.

Annexe 5 Guide d'utilisation de l'interface du SIH/LIS

REMARQUE :

Lors de la connexion du système i15 au système SIH/LIS, définissez le port TCP/IP du SIH/LIS sur 8000.

A5.1 Principe

A5.1.1 Conception de la communication

Les messages HL7 peuvent être transférés via un port réseau ou série et le système i15 utilise le réseau pour les transmettre. Le protocole EDAN HL7 définit que la connexion réseau utilise le mode C/S. Le système i15 transmet les données au SIH/LIS.

Les systèmes i15 et SIH/LIS doivent se trouver sur le même réseau local pour pouvoir échanger des données. Le système i15 convertit les données en messages HL7, puis les transmet au SIH/LIS. Le SIH/LIS transmet également les messages HL7 au système i15.

Figure A5-1 Conception du système

A5.1.2 Transmission des données

Le système i15 transmet les messages ORU uniquement en mode de transmission non sollicitée et reçoit les accusés de réception provenant du SIH/LIS. Si les ingénieurs SIH/LIS ont besoin que le système i15 traite les accusés de réception, ce dernier transmettra également les messages de réponse.

Figure A5-2 Transmission des données

A5.1.3 Protocole HL7 MLLP (HL7 Lower Layer Protocol)

Le protocole HL7 MLLP est utilisé pour étiqueter les extrémités des messages HL7.

Le format est indiqué ci-dessous :

0x0B	Message HL7	0x1C	0x0D

Figure A5-3 Structure d'un message HL7

- Si les messages commencent par les caractères ASCII <VT>, les valeurs hexadécimales sont représentées sous la forme 0x0B.
- Si les messages se terminent par les caractères ASCII <FS> et <CR>, les valeurs hexadécimales sont représentées sous la forme 0x1C et 0x0D.

REMARQUE:

Les caractères de début et de fin ne sont présents que si l'application de service transmet les données HL7 d'origine. Si l'application de service sélectionne le format XML, le schéma ci-dessus ne s'applique pas. Seuls les messages HL7 sont pris en charge et sont codés au format XML.

A5.1.4 Type de codage des messages

Le système i15 utilise le format UTF8 pour coder et décoder les messages. Si le SIH/LIS n'utilise pas le format UTF8, vous devez l'ajouter.

A5.2 Messages HL7

A5.2.1 Syntaxe des messages

Pour plus d'informations sur la syntaxe des messages HL7, reportez-vous aux normes HL7.

Chaque message HL7 est constitué de segments et se termine par <CR>.

Chaque segment se compose d'un nom à trois caractères et de nombres variables de champs de données. Les champs de données sont constitués de composants et de sous-composants. Les séparateurs sont définis dans le segment MSH.

Par exemple :

MSH|^~\&|||||||ORU^R01|0001|P|2.4

Les cinq séparateurs situés après MSH sont utilisés pour séparer les champs, les composants et les sous-composants. Même s'il peut s'agir de n'importe quel caractère non-texte, les caractères suivants sont recommandés dans les normes HL7 :

Séparateur de champs Séparateur de composants & Séparateur de sous-composants ~ Séparateur de répétitions \ Caractère d'échappement	Caractère	Définition
^ Séparateur de composants & Séparateur de sous-composants ~ Séparateur de répétitions \ Caractère d'échappement		Séparateur de champs
& Séparateur de sous-composants ~ Séparateur de répétitions \ Caractère d'échappement	Λ	Séparateur de composants
~ Séparateur de répétitions \ Caractère d'échappement	&	Séparateur de sous-composants
\ Caractère d'échappement	~	Séparateur de répétitions
	\	Caractère d'échappement

Règles relatives aux messages : [] indique que le segment peut être sélectionné.

{} indique que le segment peut être répété 0, une ou plusieurs fois.

A5.2.2 Types de messages pris en charge

Les types de messages suivants sont pris en charge :

Résultats du patient / Résultats du CQ : ORU^R01

A5.2.3 Accusés de réception

Les accusés de réception se structurent comme suit :

En-tête de message MSH

Accusé de réception de message MSA

Le segment MSA contient un code de confirmation et un ID de contrôle du message. En cas d'erreur, une chaîne d'erreur s'affiche.

MSH|^~\&|EDAN|i15|LIS||20130929174802||ACK^R01|1|P|2.4||||0|| UNICODE UTF-8|||

MSA|AA|1|Message accepté

A5.2.4 Transmission des rapports

A5.2.4.1 Messages ORU^R01

Les résultats du patient et du CQ sont transmis au système SIH/LIS sous forme de messages ORU^R01.

Les règles qui régissent les messages ORU^R01 sont les suivantes : « MSH {[PID [PD1] <NK1> <NTE> [PV1 [PV2]]] {[ORC] OBR <NTE> [CTD] {[OBX] <NTE>} <FT1> <CTI>}} [DSC] ». Le segment PID correspond aux informations patient. Le segment OBR contient l'ID d'échantillon et l'heure de génération des données OBX. Le segment OBX illustre les valeurs des paramètres du segment OBR.

A5.2.4.2 Résultats du patient

Les résultats du patient contiennent les informations suivantes :

- Informations sur l'élément (heure du test, nom de l'élément)
- Informations sur l'échantillon (ID d'échantillon, type d'échantillon, ID d'opérateur)
- Information Patient
- Résultats du test

La structure de transmission des résultats du patient est la suivante :

```
ORU - Description des résultats d'observation (non sollicités)
```

MSH - En-tête de message (nom de l'élément, date du message)

PID - Informations sur le patient (ID patient, sexe)

OBR - Rapport d'observation (ID d'échantillon, type d'échantillon, ID d'opérateur)

{OBX} - Résultats du test (date du test, informations du patient, résultats mesurés, résultats calculés, résultats d'étalonnage)

A5.2.4.3 Résultats du CQ

Les résultats du CQ contiennent les informations suivantes :

- Informations sur l'élément (date, nom de l'élément)
- Informations sur le CQ (date du test, nom du CQ, type de CQ, numéro du lot, niveau, ID d'opérateur)
- Résultats du test (nom du paramètre, valeur, unité, statut (Sous contrôle, Hors de contrôle, Echec de l'étalonnage), plage de références, résultats d'étalonnage)

La structure de transmission des résultats du CQ est la suivante :

ORU - Description des résultats d'observation (non sollicités)

MSH - En-tête de message (nom de l'élément, date du test)

OBR - Résultats du CQ (nom du CQ, type de CQ, numéro du lot, niveau, ID d'opérateur)

OBX - Résultats du test (résultats du CQ)

A5.3 Annexe

A5.3.1 Segment de message

A5.3.1.1 MSH

Exemple : MSH|^~\&|EDAN|i15|LIS||20130929174802||ORU^R01|1|P|2.4||||0|| UNICODE UTF-8|||

Les champs suivants du segment MSH sont utilisés :	
--	--

N°	Longueur	Туре	Nom du champ	Description
1.	Longucui	Турс	Séparateur de champs 1	Ce champ contient l'ID du segment et le premier séparateur de champs. Il définit les séparateurs de champs des autres sections
				d'un message.

N°	Longueur	Туре	Nom du champ	Description
				Ce champ contient les
				séparateurs de composants,
2	4	ST	Caractères de codage	de répétitions, de
2.	-	51	Caracteres de codage	sous-composants et les
				caractères d'échappement
				(^~∖&).
3.	180	HD	Application d'envoi	Défini par défaut sur Edan
4.	180	HD	Equipement d'envoi	Modèle du produit
5.	180	HD	Application de réception	Défini par défaut sur SIH/LIS
6.	180	HD	Equipement de réception	Non présent
7.	26	TS	Date/Heure du message	Heure UTC du système
8.	40	ST	Sécurité	Non présent, conserver
				Par exemple, ORU^R01.
				Les messages ORU^R01 sont
				essentiellement utilisés pour
0	12	CM MCC TYPE	T	transmettre les résultats de
9.	15	CM_MSG_TYPE	Type de message	test dans HL7. Le système i15
				les utilise pour transmettre les
				résultats du patient/CQ au
				système SIH/LIS.
			ID de sentrêle du	Identifie un message.
10.	20	ST	ID de controle du	Le système i15 numérote les
			message	messages à partir de 1.
11.	3	РТ	ID traitement	P (produit)
12	60	VID	ID version	Version du protocole HL7 :
12.	00	VID		2.4 (par défaut)
13.	15	NM	Numéro de séquence	Non présent, conserver
14.	180	ST	Pointeur de continuation	Non présent, conserver
15	2	ID	Type d'accusé de	Non présent conserver
15.	2		réception accepté	
				Utilisé par le système i15 en
				tant que type de résultat :
16	2	ID	Type d'accusé de	0- Résultat du patient
10.	2	ID	réception d'application	1- Résultat de contrôle
				2- Résultat de la vérification
				d'étalonnage
17.	3	ID	Indicatif du pays	Non présent, conserver
10	16		Iou de correctères	Défini par défaut sur
10.	10	ID	jeu de caracteres	UNICODE UTF-8
10	250	CE	Langage principal du	Non présent conserver
19.	230		message	ivon present, conserver

N°	Longueur	Туре	Nom du champ	Description
20.	20	ID	Type de traitement du jeu de caractères alternatif	Non présent, conserver
21.	10	ID	ID de déclaration de conformité	Non présent, conserver

Remarques : ce segment apparaît dans tous les messages. Les 3^e et 4^e champs sont renseignés par le développeur SIH/LIS. Le 5^e champ doit contenir EDAN, le 6^e i15, le 10^e et le 16^e doivent contenir des nombres entiers. Les autres champs doivent contenir des chaînes.

A5.3.1.2 OBR (échantillon patient)

Les segments OBR sont utilisés pour transmettre les informations d'examen clinique sur les rapports de test.

Pour les données des résultats du patient (avec MSH-16 défini sur 0), l'heure du test, l'ID d'échantillon et le type d'échantillon doivent être transmis.

N°	Longueur	Туре	Nom du champ	Description
1	4	SI	Ensemble ID-OBR	Non présent
2	22	EI	Numéro d'ordre du	Non présent
			demandeur	
3	22	EI	Numéro d'ordre du	Utilisé par le système i15 en
			prestataire	tant qu'ID échantillon
4	250	CE	ID du service	Fabricant ^ Modèle :
			universel	EDAN^i15
5	2	ID	Priorité	Non présent, conserver
6	26	TS	Date/Heure	Non présent, conserver
			requises	
7	26	TS	Date/Heure de	Utilisé par i15 en tant qu'heure
			l'observation	du test
8	26	TS	Date/Heure de fin	Non présent, conserver
			de l'observation	
9	20	CQ	Volume de	Non présent, conserver
			prélèvement	
10	250	XCN	Identifiant du	Non présent, conserver
			responsable du	
			prélèvement	

Les champs suivants sont utilisés :

N°	Longueur	Туре	Nom du champ	Description
11	1	ID	Code d'action du	Non présent, conserver
			spécimen	
12	250	CE	Code de danger	Non présent, conserver
13	300	ST	Infos cliniques	Non présent
			pertinentes	
14	26	TS	Date/Heure des	Non présent, conserver
			échantillons reçus	
15	300	CM_SPECIMEN_	Source de	Utilisé par le système i15 en
		SOURCE	l'échantillon	tant que type d'échantillon. Il
				existe six types d'échantillons :
				artériel, veineux, veineux mêlé,
				capillaire, aqueux et CPB.
16	250	XCN	Emetteur de l'ordre	Utilisé par le système i15 en
				tant qu'ID opérateur
17	250	XTN	Numéro de rappel	Non présent
			de l'ordre	
18	60	ST	Champ des	Non présent
			demandeurs1	
19	60	ST	Champ des	Non présent, conserver
			demandeurs2	
20	60	ST	Champ des	Non présent, conserver
			prestataires1	
21	60	ST	Champ des	Non présent, conserver
			prestataires2	
22	26	TS	Rapport de	Non présent, conserver
			résultats/Date de	
			modification de	
			l'état	
23	40	CM_CHARGE_	Facturation au	Non présent, conserver
	10	PRACTICE	cabinet médical	
24	10	ID	ID Serv Sect	Non présent, conserver
			diagnostic	
25	l	ID	Etat des résultats	Non présent, conserver
26	400	CM_PARENT_ RESULT	Résultats associés	Non présent, conserver
27	200	ТО	Ouantité/Synchroni	Non présent, conserver
			sation	1
28	250	XCN	Copies des	Non présent, conserver
			résultats vers	
29	200	CM_PARENT O	# Transmission	Non présent, conserver
		RDER	niveau parent	
30	20	ID	Mode de transport	Non présent, conserver

N°	Longueur	Туре	Nom du champ	Description
31	250	CE	Motif de l'étude	Non présent, conserver
32	200	CM_RESULT_	Responsable de	Non présent, conserver
		PERSON	l'interprétation des	
			résultats	
33	200	CM_RESULT_	Assistant du	Non présent, conserver
		PERSON	responsable de	
			l'interprétation des	
			résultats	
34	200	CM_RESULT_	Technicien	Non présent, conserver
		PERSON		
35	200	CM_RESULT_	Responsable de la	Non présent, conserver
		PERSON	transcription	
36	26	TS	Date/Heure	Non présent, conserver
			planifiée	
37	4	NM	Nombre de	Non présent, conserver
			conteneurs	
			d'échantillons	
38	60	CE	Logistique de	Non présent, conserver
			transport de	
			l'échantillon	
- 20	250	<u>CE</u>	prélevé	
39	250	CE	Commentaires du	Non présent, conserver
			responsable du	
- 10	2.50		prélèvement	
40	250	CE	Responsabilité	Non présent, conserver
			relative a	
			l'organisation du	
4.1	20	ID	transport	
41	30	ID ID	Transport prevu	Non present, conserver
42	1		Escorte requise	Non present, conserver
43	250	CE	Commentaires sur	Non present, conserver
			le transport planifie	
4.4	250	CE	du patient	Non mérent concerne
44	230	UE	d'avaman	non present, conserver
15	250	CE	A drease du site	Non présent conserver
43	230	UE	d'examon	non present, conserver
16	250	CE	Numáro do	Non présent conserver
40	230	U L	téléphone du site à	non present, conserver
			l'origine de l'ordro	
17	250	CE	A dresse de	Non présent conserver
+/	230		Auresseue	non present, conserver

Remarques : ce segment de message est uniquement contenu dans les messages ORU^R01. Les 1^{er}, 3^e et 37^e champs doivent contenir des nombres entiers. Le 9^e champ doit contenir une virgule flottante et les autres champs, des chaînes.

A5.3.1.3 OBR (CQ)

Pour les résultats du CQ (avec MSH-16 défini sur 1 ou 2), le nom du CQ, le type de CQ, le numéro du lot, le niveau et l'ID d'opérateur doivent être transmis.

Par exemple :

OBR||2|Calver|EDAN^i15|||2013100109300000||||||CommonQC|21219||opr001

OBR||2|LiquidCtl|EDAN^i15|||2013100109300000||||||CommonQC|21219||opr001

Les champs suivants sont utilisés :

N°	Longueur	Туре	Nom du champ	Description
1	4	SI	Ensemble ID-OBR	Non présent
2	22	EI	Numéro d'ordre du	Utilisé par le système i15 en tant
			demandeur	que niveau de CQ : 1, 2, 3, 4, 5 ;
				faible, élevé
3	22	EI	Numéro d'ordre du	Utilisé par le système i15 en tant
			prestataire	que nom de CQ Contrôle :
				Contrôle
				Vérification d'étalonnage : Calver
4	250	CE	ID du service	Fabricant ^ Modèle : EDAN^i15
			universel	
5	2	ID	Priorité	Non présent, conserver
6	26	TS	Date/Heure	Non présent, conserver
			requises	
7	26	TS	Date/Heure de	Utilisé par le système i15 en tant
			l'observation	qu'heure du test CQ
8	26	TS	Date/Heure de fin	Non présent, conserver
			de l'observation	
9	20	CQ	Volume de	Non présent, conserver
			prélèvement	
10	250	XCN	Identifiant du	Non présent, conserver
			responsable du	
			prélèvement	
11	1	ID	Code d'action du	Non présent
			spécimen	
12	250	CE	Code de danger	Non présent

N°	Longueur	Туре	Nom du champ	Description
13	300	ST	Infos cliniques	Utilisé par le système i15 en tant
			pertinentes	que type de CQ
				Hct : HctQc
				Gazométrie et électrolyte : BGQc
14	26	TS	Date/Heure des	Numéro du lot de solutions de CQ
			échantillons reçus	
15	300	CM_SPECIMEN_	Source de	Non présent
		SOURCE	l'échantillon	
16	250	XCN	Emetteur de l'ordre	Utilisé par le système i15 en tant
				qu'ID d'opérateur
17	250	XTN	Numéro de rappel	Non présent
			de l'ordre	
18	60	ST	Champ des	Non présent
		~~	demandeurs 1	
19	60	ST	Champ des	Non présent
•	6.0	am	demandeurs 2	
20	60	ST	Champ des	Non présent
	60	CTT.	prestataires I	
21	60	ST	Champ des	Non présent
			prestataires 2	
22	26	TS	Rapport de	Non présent
			resultats/Date de	
			modification de	
- 22	40	CM CHADCE	retat	
23	40	CM_CHARGE_	Facturation au	Non present, conserver
24	10	PRACTICE	ID Same Saat	Non mégant concomion
24	10	ID	ID Serv Sect	Non present, conserver
25	1	ID	Clagnostic	Non másont
25	1	ID CM DADENIT	Etat des resultats	Non présent
20	400	CM_PAKENI_	Resultats associes	Non present, conserver
27	200	TO	Quantitá	Non présent concerner
27	200	IQ	Quantile/	Non present, conserver
20	250	VCN	Copies des	Non prágont, conservor
20	230	AUN	copies des	Non present, conserver
20	200	CM DADENIT	# Transmission	Non prágont, conservor
29	200		# 11allSlillSSlOll	
30	20		Mode de transport	Non présent conserver
30	20	CE	Motif de l'átudo	Non présent, conserver
22	230	CM RESULT	Responsable de	Non présent, conserver
52	200	DERSON	l'interprétation das	
		I LINSUN	régultate	
1			resultats	

N°	Longueur	Туре	Nom du champ	Description
33	200	CM_RESULT_	Assistant du	Non présent, conserver
		PERSON	responsable de	
			l'interprétation des	
			résultats	
34	200	CM_RESULT_	Technicien	Non présent, conserver
		PERSON		
35	200	CM_RESULT_	Responsable de la	Non présent, conserver
		PERSON	transcription	
36	26	TS	Date/Heure	Non présent, conserver
			planifiée	
37	4	NM	Nombre de	Non présent, conserver
			conteneurs	
			d'échantillons	
38	60	CE	Logistique de	Non présent, conserver
			transport de	
			l'échantillon	
			prélevé	
39	250	CE	Commentaires du	Non présent, conserver
			responsable du	
			prélèvement	
40	250	CE	Responsabilité	Non présent, conserver
			relative à	
			l'organisation du	
			transport	
41	30	ID	Transport prévu	Non présent, conserver
42	1	ID	Escorte requise	Non présent, conserver
43	250	CE	Commentaires sur	Non présent, conserver
			le transport planifié	
			du patient	
44	250	CE	Nom du site	Non présent, conserver
			d'examen	
45	250	CE	Adresse du site	Non présent, conserver
			d'examen	
46	250	CE	Numéro de	Non présent, conserver
			téléphone du site à	
			l'origine de l'ordre	
47	250	CE	Adresse de	Non présent, conserver
			l'émetteur de	
			l'ordre	

Remarques : ce segment figure uniquement dans les messages ORU^R01. Les 1^{er}, 11^e et 37^e champs doivent contenir des nombres entiers. Les autres champs doivent contenir des chaînes.

A5.3.1.4 OBX

Les segments OBX sont principalement utilisés pour transmettre les informations de test dans les messages de rapport.

Résultats du patient :

Informations patient (ID du patient, température, sexe, etc.)

Résultats du test

Par exemple :

Résultats du patient :

OBX|2|ST|2|O2MODE|RoomAir|||||||||20131001093000||opr001

Résultats du CQ :

Résultats du test (nom du paramètre, valeur, unité, statut (Sous contrôle, Hors de contrôle, Echec de l'étalonnage), plage de références, résultats d'étalonnage)

N°	Longueur	Туре	Nom du champ	Description
1	4	SI	Ensemble ID-OBX	Détermine les différents
				segments OBX.
2	2	ID	Type de valeur	Utilisé en tant que type de
				résultat. NM (numérique)
				est utilisé pour les éléments
				quantitatifs et ST (string,
				chaîne), pour les éléments
				qualitatifs.
3	250	CE	Identifiant d'observation	Utilisé par le système i15 en
				tant qu'ID d'élément
				Paramètre mesuré : 0 ;
				paramètre calculé : 1 ;
				informations du patient : 2.
4	20	ST	Sous-ID d'observation	Utilisé par le système i15 en
				tant que nom d'élément,
				comme pH, Na^+ et Ca^{++}
5	65536	WILDCARD	Valeur d'observation	Le système i15 l'utilise en
				tant que valeur de test, par
				exemple 134, ???.

N°	Longueur	Туре	Nom du champ	Description
6	250	CE	Unités	Unité du paramètre, comme mmol/L ou mmHg
7	60	ST	Plage de référence	Plage normale d'un
				paramètre, par exemple 39^45
8	5	IS	Indicateurs anormaux	Description du résultat du
				test : L – Low (faible) ; H –
				High (élevé) ; N - Normal
				*** : Hors de contrôle avec
				verrouillage CQ désactivé
				↓ : inférieur à la plage de références
				↑ : supérieur à la plage de références
9	5	NM	Probabilité	Non présent
10	2	ID	Nature du test anormal	Non présent
11	1	ID	Statut du résultat	Non présent
			d'observation	
12	26	TS	Date des dernières valeurs normales observées	Non présent, conserver
13	20	ST	Contrôles d'accès définis	Résultats d'étalonnage :
			par l'utilisateur	OK, Echec
			1	Résultats du CQ : Sous
				contrôle,
				Hors de contrôle, Echec de
				l'étalonnage
14	26	TS	Date/Heure d'observation	Utilisé par le système i15 en
				tant qu'heure du test
15	250	CE	ID producteur	Non présent, conserver
16	250	XCN	Responsable de	Utilisé par le système i15 en
			l'observation	tant qu'ID opérateur
17	250	CE	Méthode d'observation	Non présent, conserver
18	22	EI	Identifiant de l'instance	Non présent, conserver
			d'équipement	
19	26	TS	Date/Heure d'analyse	Non présent, conserver

Remarques : ce segment figure uniquement dans les messages ORU^R01. Les 1^{er} , 3^{e} et 9^{e} champs doivent contenir des nombres entiers. Les 5^{e} et 13^{e} champs doivent contenir une virgule flottante et les autres champs, des chaînes.

A5.3.1.5 PID

Le segment PID est essentiellement utilisé pour créer les informations patient. Il est uniquement utilisé dans les résultats du patient pour transmettre son ID et son sexe. Exemple : PID|||PatientID|||||M.

Les champs suivants sont utilisés :

N°	Longueur	Туре	Nom du champ	Description	
1	4	SI	Ensemble ID patient Non présent		
2	20	СХ	ID patient (ID externe)	Non présent	
3	250	CX	Liste d'identifiants du patient	ID patient, requis	
4	20	CX	Autre ID patient	Non présent	
5	250	XPN	Nom du patient	Non présent	
6	250	XPN	Nom de jeune fille de la mère	Non présent	
7	26	TS	Date/Heure de naissance	Non présent	
8	1	IS	Sexe	Homme : M ; femme : F ;	
				autre : O ; inconnu U	
9	250	XPN	Pseudonyme du patient	Non présent	
10	250	CE	Origine ethnique	Non présent, conserver	
11	250	XAD	Adresse du patient	Non présent	
12	4	IS	Indicatif du pays	Non présent	
13	250	XTN	Numéro de téléphone du domicile	Non présent	
14	250	XTN	Numéro de téléphone	Non présent, conserver	
			professionnel		
15	250	CE	Langue du patient	Non présent, conserver	
16	250	CE	Statut marital	Non présent, conserver	
17	250	CE	Religion	Non présent	
18	250	CX	Numéro de compte du patient	Non présent	
19	16	ST	Numéro de sécurité sociale du	Non présent	
			patient		
20	25	DLN	Numéro de permis de conduire du	Non présent	
			patient		
21	250	СХ	Identification de la mère	Non présent	
22	250	CE	Groupe ethnique	Non présent	
23	250	ST	Lieu de naissance	Non présent	
24	1	ID	Indicateur de naissances multiples	Non présent, conserver	
25	2	NM	Examen de naissance	Non présent, conserver	
26	250	CE	Citoyenneté	Non présent	
27	250	CE	Statut de vétéran	Non présent, conserver	
28	250	CE	Nationalité	Non présent	
29	26	TS	Date et heure de décès du patient	Non présent	
30	1	ID	Indicateur de décès du patient	Non présent	

\mathbf{N}°	Longueur	Туре	Nom du champ	Description
31	1	ID	Indicateur d'identité inconnue	Non présent
32	20	IS	Code de fiabilité de l'identité	Non présent
33	26	TS	Date/Heure de la dernière	
			mise à jour	
34	40	HD	Dernière mise à jour du site	
35	250	CE	Code d'espèce	Non présent
36	250	CE	Code de race	Non présent
37	80	ST	Tension	
38	250	CE	Code de classe de production	

Remarques : ce segment figure uniquement dans les messages ORU^R01. Les 1^{er} et 9^e champs doivent contenir des nombres entiers. Les 24^e et 30^e champs doivent contenir des données booléennes. Les autres champs doivent contenir des chaînes.

A5.3.1.6 MSA

N°	Longueur	Туре	Nom du champ	Description	
1	2	ID	Code d'accusé de réception	AA : Accepté	
				AE : Erreur	
				AR : Refusé	
2	20	ST	ID de contrôle du message	Même ID que la valeur MSH-10 de	
				l'équipement d'envoi	
3	80	ST	Message texte	Consignation de l'erreur ou du refus	
				au format texte. Ce champ	
				correspond au 6 ^e champ et est	
				utilisé pour consigner l'erreur.	
4	15	NM	Numéro de séquence prévu	Conservation	
5	1	ID	Type d'accusé de réception	Conservation	
			retardé		
6	250	CE	Condition de l'erreur	Conservation	

Remarques : ce segment peut figurer dans les messages ACK^R01, QCK^Q02 et ACK^Q03.

A5.3.2 Exemples

A5.3.2.1 Résultats du patient

Résultats du patient :

Figure A5-4 Résultats du patient

Résultats mesurés :

Détails échant. patient									
Mesuré	Calculé	Infos pat.							
Paramètre	Résultat	Unité	Plage référence	Calibrer					
рН			[6.500-8.000]	Echec 🔶					
pO2	212 ***	mmHg	[10-700]	ок					
pCO2	< 10.0	mmHg	[10.0-150.0]	ок					
Na+	188 ***	mmol/L	[100-180]	ок					
К+	> 9.0	mmol/L	[2.0-9.0]	ок					
Ca++	0.41	mmol/L	[0.25-2.50]	ок					
CI-	> 150	mmol/L	[65-140]	ок					
Hct	???	%	[10-75]	ок 🖵	• Retour				
Util. rest	t. pack ét.:100 ,	jrs:30	-	 2013-11-12	16: 20 🕐				

Figure A5-5 Résultats mesurés

Résultats calculés :

Information Patient :

Magurá	leulá Infac nat		
Mesure Ca	incuie infos pat.		`
Paramètre	Résultat	Unité	
tHb(est)	15.6	g/dL	
cH+	39.8	nmol/L	
HCO3-act	21.8	mmol/L	
HCO3-std	22.5	mmol/L	
BE(ecf)	-3.0	mmol/L	
		-	• Retou

Figure A5-6 Résultats calculés

Détails échant. patient Mesuré Calculé Infos pat. Unité Elém. Résultat Température 38.0 °C FIO2 0.45 Retour 也 💼 🎳 Util. rest. pack ét.:100 , jrs:30 2013-11-12 13: 26

Figure A5-7 Informations patient

Données HL :

MSH|^~\&|EDAN|i15|LIS||20131213162551||ORU^R01||P|2.4||||0||UNICODE UTF-8||||

 $OBX|0|ST|0|pH|\text{---}||6.500^{8}.000|||||||Fail|20131117043117||edan||||$

 $OBX|1|ST|0|pO2|24.3|kPa|1.3^{93.3}|***|||||Pass|20131117043117||edan||||$

 $OBX|2|ST|0|pCO2|???|kPa|1.33^{2}0.00|||||||Pass|20131117043117||edan||||$

OBX|3|ST|0|Na|>|mmol/L|100^180|180|||||Pass|20131117043117||edan|||| OBX|4|ST|0|K|8.2|mmol/L|2.0^9.0|***|||||Pass|20131117043117||edan|||| OBX|5|ST|0|Ca|0.58|mmol/L|0.25^2.50||||||Pass|20131117043117||edan|||| OBX|6|ST|0|C1|>|mmol/L|65^140|140|||||Pass|20131117043117||edan|||| OBX|7|ST|0|Hct|24|%|10^75|***|||||Pass|20131117043117||edan|||| OBX|8|ST|1|tHbest|10|g/dL|3.4^25.5|||||||20131117043117||edan|||| OBX|9|ST|1|cH|120.5|nmol/L|10.0^316.2|||||||20131117043117||edan|||| OBX|10|ST|1|HCO3act10.1mmol/L|1.0^99.9|||||||20131117043117||edan|||| OBX|11|ST|1|HCO3std|12.3|mmol/L|1.0^99.9|||||||20131117043117||edan|||| OBX|12|ST|1|BEecf|???|mmol/L|-30.0^30.0|||||||20131117043117||edan|||| OBX|13|ST|1|BEB|6.3|mmol/L|-30.0^30.0|||||||20131117043117||edan|||| OBX|14|ST|1|BBB|???|mmol/L|13.1^82.4|||||||20131117043117||edan|||| OBX|15|ST|1|ctCO2|???|mmol/L|1^100||||||20131117043117||edan|||| OBX|16|ST|2|HbType|Adult|||||||20131117043117||edan|||| OBX|17|ST|2|PunctureSite|LR||||||||20131117043117||edan|||| OBX|18|ST|2|VentMode|None||||||||20131117043117||edan|||| OBX|19|ST|2|O2Mode|Room Air||||||||20131117043117||edan|||| OBX|20|ST|2|Bypass|Pump Off||||||||20131117043117||edan||||

Analyse des définitions des champs de données

Analyse MSH :

Analyse PID :

Analyse OBR :

Analyse OBX :

Analyse OBX :

A5.3.2.2 Résultats de contrôle (BG)

Données de contrôle :

	BdD de commandes								
(N°	Date et heure	ID opérat.	Type CQ	Niv.	Nº de lot			
	1	2013-11-12 14:37:47	1	Hct	Fort	21209		Impr. Q Recher. Détails Préc.	Téléch. •
	Pge: 1/2	1 Afficher der. donnée	s mens.						
	Ċ	Util. rest. pack ét.:10) , jrs:30			₩	201	3-11-12 15:	38 🥘

Figure A5-8 Données de contrôle

Résultats du test de contrôle :

Détails commande								
Paramètre Etat du CQ Résultat Unité				Plage référence)			
рН	Sous contrôle	7.361		[7.300-7.400]				
pO2	Sous contrôle	100	mmHg	[95-105]				
pCO2	Sous contrôle	40.0	mmHg	[35.0-45.0]				
Na+	Sous contrôle	142	mmol/L	[138-146]				
K+	Sous contrôle	4.2	mmol/L	[4.0-4.5]				
Ca++	Sous contrôle	1.20	mmol/L	[1.10-1.20]				
CI-	Sous contrôle	100	mmol/L	[98-106]				
Glu	Sous contrôle	5.1	mmol/L	[4.9-5.8]	Retour			
Util.	rest. pack ét.:100 , jrs:	30		📮 🛱 2013-11-3	12 13: 44 🕜			

Figure A5-9 Résultats du test de contrôle

Données HL7 :

MSH|^~\&|EDAN|i15|LIS||20131213162901||ORU^R01||P|2.4||||1||UNICODE UTF-8||||

 $OBX|0|ST|0|pH| --- ||7.120^{7}.201|||||||CaliFail|20131117040651||edan||||$

 $OBX|1|ST|0|pO2|12.7|kPa|7.4^{10.1}||||||OutControl|20131117040651||edan|||||$

OBX|2|ST|0|pCO2|7.31|kPa|8.02^10.16||||||OutControl|20131117040651||edan||||

OBX|3|ST|0|Na|131|mmol/L|111^119||||||OutControl|20131117040651||edan||||

 $OBX|4|ST|0|K|3.4|mmol/L|1.4^{2}.4||||||OutControl|20131117040651||edan||||$

 $OBX|5|ST|0|Ca|1.29|mmol/L|1.27^{1.77}||||||UnderControl|20131117040651||edan||||$

 $OBX |6|ST|0|C1|???|mmol/L|73^{81}||||||OutControl|20131117040651||edan||||$

Analyse des définitions des champs de données

Analyse MSH :

MSH|^~\&|EDAN| i15|LIS||20131213162901||ORU^R01||P|2.4|||1||UNICODE_UTF-8||||

Analyse OBR :

A5.3.2.3 Résultats de vérification d'étalonnage (Hct)

Données de vérification d'étalonnage :

BdD de ver. étalons										
N°	Date et heure	ID opérat.	Type CQ	Niv.	Nº de lot					
1	2013-10-14 00:03:19	1	BG	2	21209	Impr. Téléch. Q Finite Constraints Recher. Export. Détails Préc. Suiv. Suiv.				
Pge: 1/	1 Afficher der. donnée	s mens.								
Ċ	Aucun pack d'ét. tro	uvé			2 01	.3-11-13 13: 26 📀				

Figure A5-10 Données de vérification d'étalonnage

Résultats du test de vérification d'étalonnage :

Détails ver. étal.										
Paramètre	Etat du CQ	Résultat	Unité	Plage référence)					
рН	Sous contrôle	7.300		[7.300-7.400]						
pO2	Sous contrôle	100	mmHg	[90-105]						
pCO2	Sous contrôle	40.0	mmHg	[35.0-45.0]						
Na+	Sous contrôle	142	mmol/L	[138-146]						
K+	Sous contrôle	4.2	mmol/L	[4.0-4.5]						
Ca++	Sous contrôle	1.20	mmol/L	[1.10-1.20]						
Cl-	Sous contrôle	100	mmol/L	[98-106]						
Glu	Sous contrôle	5.1	mmol/L	[4.9-5.8]	Retour					
J Aucu	un pack d'ét. trouvé			2013-11-1	.3 13: 26 🛛 🕘					

Figure A5-11 Résultats du test de vérification d'étalonnage

Données HL7 :

 $MSH|^{\sim} \& |EDAN| i15| LIS|| 20131213163038 ||ORU^{R}01||P|2.4||||2||UNICODE \ UTF-8|||| \\ |IS||^{10} ||IS||^{10} ||IS||^{10$

 $OBX|0|ST|0|Hct|6|\%|17^{23}||||||OutControl|20131117041311||edan||||$

Représentant autorisé dans la Communauté européenne: Shanghai International Holding Corp. GmbH (Europe) Adresse: Eiffestrasse 80, D-20537 Hamburg Germany Tél: +49-40-2513175 Fax: +49-40-255726 E-mail: antonjin@yahoo.com.cn

Fabricant: EDAN INSTRUMENTS, INC. Adresse: 3/F-B, Nanshan Medical Equipments Park, Nanhai Rd 1019#,Shekou, Nanshan Shenzhen, 518067 P.R. CHINA Email: info@edan.com.cn Tél: +86-755-2689 8326 Fax: +86-755-2689 8330